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Electron velocity distribution functions in the solar wind

• Electrons vdf measured in the solar wind typically present anisotropies, in 
particular in the 100eV – 1keV energy range. 

• These anisotropies have to be controled by some isotropization process 
(mirror force would collimate electrons within ∼ 1° at 1 AU)



Normalized pitch-angle distributions

In the 100 eV– 1 keV range, distributions show a typical strahl/halo pitch-angle 
structure. The strahl angular width shows dependence both on distance and energy.



Transport equation

We use the « focused transport » equation

Which describes the evolution of the gyrophase-averaged $(&, ( = cos -, .), accounting
for inertial effects due to $ being measured in the solar wind frame of reference.

The relevant evolution timescales are given by the expressions:
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Steady state pitch angle evolution

• The energy distributions evolve on slower timescales than pitch angle distributions. So 
the evolution of PA distribution is to a large extent uncoupled from energy distribution.

• Keeping only the dominent terms in the transport equation, we reach the following
equation for the evolution of the electrons distribution function in the (2, ( = cos -)
phase space

Magnetic focusing by
mirror force

Isotropic pitch angle scattering by 
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Analytical solution for a small Knudsen number

If 33 = 4256, an analytical solution can be found
for the normalized pitch angle distribution at each
distance from the Sun as a function of 7'

Sheds light on the nature of the strahl/halo pitch angle 
structure : produced by competition between diffusion 
and focusing, the balance being determined by Kn.

We expect this solution to be valid in the limit 78 → 0

Kn = 0.01

Kn = 0. 1

Kn = 1

Kn = 5

(Knudsen number)



Solutions for a Parker spiral IMF profile, 
constant scattering mean free path

We investigate the case of a constant 
(independent of distance to the Sun) scattering
mean-free path ;4$56, L7 is given by the Parker 
spiral.

The solution is obtained by numerical integration
of the Fokker-Planck equation. 

Boundary condition : isotropic at 0.01 AU (2 Rs) 
from the Sun’s center.

We can observed the broadeing of the « strahl » 
and the appearance of a « halo ».



Solutions for a Parker spiral IMF profile, 
constant scattering mean free path

Comparision of PA distributions with the small Knudsen
number limit shows the non-local behaviour of the system 
in large Kn regions.

Locality is recovered « far away » from the Sun, when 7'
becomes small enough (typically <0.1)



What produces the distributions ? A test particle example.

• Close to the Sun, Kn is extremely high. The effect of 
scattering is negligible and the particle gets focused
along field lines.

• The particles travels out along the field line in the region
of large Kn: it is then part of the « strahl » particles.

• The particles « hits » the small Kn region at large 
distances (s > 1-3 AU) from the Sun. Here it gets
isotropized (or « localized »): it is from now on part of 
the « halo » particles.

• Sometimes, the particle escapes the swamp and is
injected back in the large Kn region: produces the halo 
component even at small distances from the Sun.



The effect of Coulomb collisions

• Close to the Sun, coulomb collisions are not 
negligible (because the plasma density is very
high). Taking them into account using a typical
(Sittler-Guhathakurta, 1999) density model, we
have the following « Knudsen number » 
structure for the interplanetary medium

• Here the gray regions correspond to Kn<1

• The boundary of region I correspond to the 
exobase of exospheric models

• But there is another exobase at the top… (an 
exoroof ?)



Where can I neglect Coulomb collisions?

• Numerical integration of the transport equation
were performed for different energies, taking
coulomb collisions into account.

• The vdf’s first moment (1st order anisotropy) is
here plotted as a function of the curvilinear
coordinate s

• After 0.6 AU roughly, distributions, even at 80 eV, 
are practically undistinguishable from the no-
collision simulation.

• This distance diminishes when electron’s energy
increases (Coulomb collision cross section…)



Where can I neglect Coulomb collisions?

• Inside the yellow region, the distributions 
contain coulomb collisions effect.

• Outside the yellow region, the distributions are 
practically the same if I consider the combined
effect of Coulomb collisions + turbulent 
scattering or turbulent scattering only.

• In the following we will fit the data using results
of numerical integration with no coulomb 
collisions.



PSP SWEAP interval examples



PSP SWEAP “bad/complex” interval examples



The fitting procedure (a SolO EAS example)
8$(2, ;)

20 x 50 PA profiles are obtained from numerical integration of the FPE
Each of these is compared to SolO or PSP data at each energy and distance

The value of ; minimising the == at the s/c position is retained.



Diffusion profiles at different distances from the Sun (PSP examples)

Solutions to the transport equation (with 33(2) calculated from a Parker spiral with
> 1?@ = 45°) were fitted to the data, varying the mean free path ; as the only free 
parameter.

The results show an overall extremely good agreement: the PA distributions observed
really support the scenario developped in the previous part (rather constant ;4$56)



Mean free path as a 
function of the energy

• The mean free path
; C ∼ 1 ?@ is not a 
strong function of the 
energy or distance.

• Variability from an event
to another (flux tube 
parameters…)

• Some intervals (1/17) 
show « diffusion-free » 
profiles (with values of 
; ∼ 3.5 ?@ or more). 



Mean free path as a 
function of the distance

• The mean free path ; C ∼ 1 ?@ is not 
a strong function of the energy or 
distance.

• Variability from an event to another
(flux tube parameters…)

• Some intervals (1/17) show « diffusion-
free » profiles (with values of ; ∼
3.5 ?@ or more). 



Conclusions/Summary

• The observed suprathermals PA distributions during quiet periods, and their evolution
with distance to the Sun, are very accurately reproduced by a transport model with a 
single free parameter ;4$56.

• This strongly supports the existence of a turbulent scattering mechanism acting with a 
rather constant mean free path even at large distances from the Sun: electrons, even at 
high energy, evolve in a « viscous » medium.

• The halo production is given a clear explanation: halo electrons observed in large Kn
regions are not locally produced, but are non-local particles having explored large portion 
of the field line.

• The turbulent scattering mean-free path is derived from observations as well as its energy
dependence Its variability at a given distance deserves a careful parametric study
(dependence on plasma beta, magnetic fluctuations, plasma density…)



Some implications and questions

• The heat flux (partly carried by suprathermals) is controlled by an isotropization process 
which, in most of the interplanetary medium, is not coulomb collisions.

• The existence of run-away processes in the solar wind is questionnable: the mean-free 
path never really increase with energy.

• What is the nature of isotropization process? 
- Whistler waves ? 
- Interaction with turbulent magnetic fluctuations ? 
- Something else ?

• The observed mean-free paths are comparable to the ones observed for SEPs events of 
low energies. Which are usually thought to be scattered by the interplanetary magnetic
field turbulence… The constancy of ;4$56 with distance also seems to indicate a role of 
the magnetic turbulence (FG/G ∼ 4256 in the interplanetary medium)


