

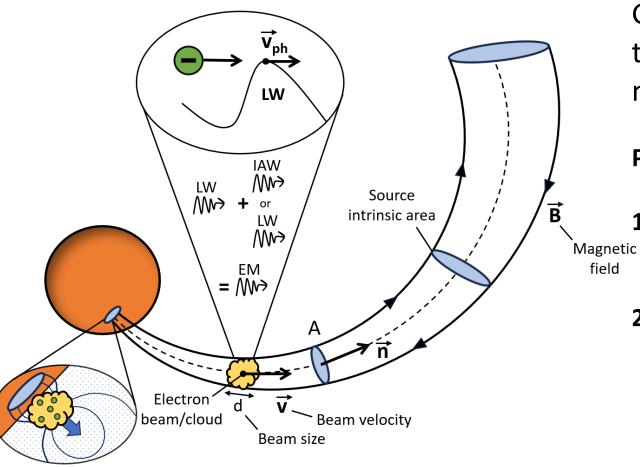
Prediction of Flux Density Maximum at 1 MHz

Presented by: Francesco Azzollini

f.azzollini.1@research.gla.ac.uk

What is a Type III burst?

Impulsive radio frequency signals that exhibit a drifting pattern from high to low frequencies over time

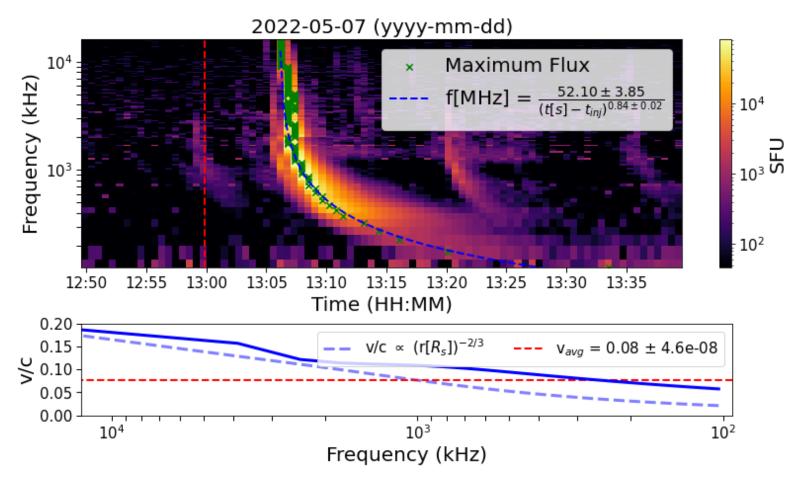


Generated by **accelerated electron beams** traveling through the solar system's plasma at nearly relativistic energies.

Process responsible for radio emission:

- Two-stream instability leads to production of
 Langmuir waves
- 2. Wave-wave interactions between Langmuir waves and ion-sound waves/ oppositely propagating Langmuir waves (fundamental emission/ harmonic emission)

Methods and Observations



25 isolated type III radio
bursts seen by STEREO, PSP
and SolO were selected.
Background noise: spectrum
10 minutes before burst
appears.
Fit for frequency as function of
time found using peak

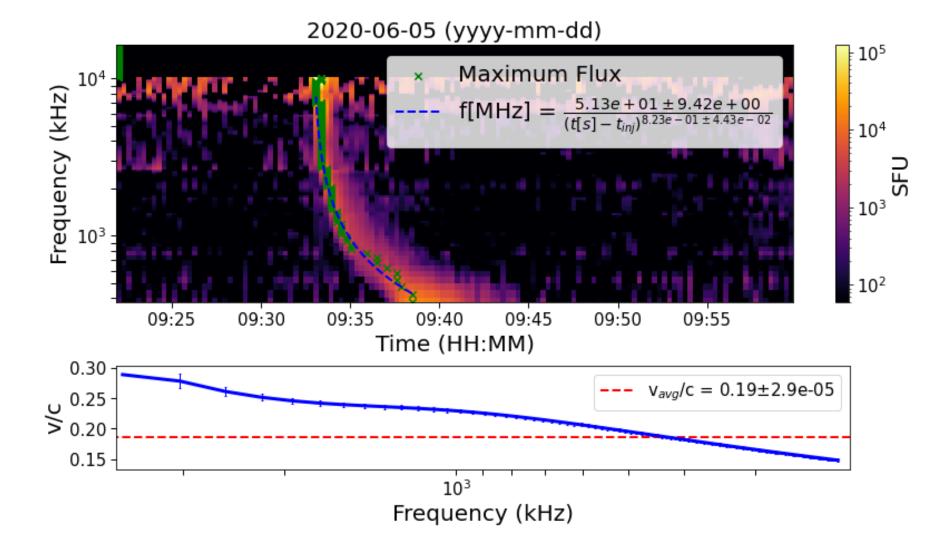
emission at each frequency

Emitter's speed v/c of 0.1 ± 0.04 was. r(f_{pe}) found through interpolation, then velocity found by taking gradient with time

[Electron density model from Kontar et al. (2019) assumed throughout this work]

$$n(r) = 4.8 \times 10^9 \left(\frac{R_{\odot}}{r}\right)^{14} + 3 \times 10^8 \left(\frac{R_{\odot}}{r}\right)^6 + 1.4 \times 10^6 \left(\frac{R_{\odot}}{r}\right)^{2.3} \text{ [cm^-3]}$$

SolO Data Coming Soon!



Modelling the interaction

Vedenov (1963); Drummond and Pines (1962): Quasi-linear (kinetic) equations for reduced field-aligned electron distribution function (f) and spectral energy density of Langmuir waves (W)

Ryutov and Sagdeev (1970); Mel'Nik et al. (1999): Smallness of τ_{qv} allows to use hydrodynamic description, with $f = f_0 + f_1 + ...$

$$\begin{split} \frac{\partial f}{\partial t} + v \frac{\partial f}{\partial x} &= \frac{4\pi^2 e^2}{m^2} \frac{\partial}{\partial v} \frac{W}{v} \frac{\partial f}{\partial v} = \frac{\partial}{\partial v} D \frac{\partial f}{\partial v} \\ \frac{\partial W}{\partial t} &= \frac{\pi \omega_{pe}}{n_p} v^2 W \frac{\partial f}{\partial v}, \end{split}$$

 τ_{qv} = characteristic time of interaction $\approx n_0 / \omega_{pe} n_b$

(Mel'nik et al 1999) The spectral energy density of the Langmuir waves can be described by

$$W(v, x, t) = \frac{m_e}{\omega_{pe}} v^4 \left(1 - \frac{v}{u_0}\right) \frac{n(x, t)}{u_0}$$

 m_e electron mass, ω_{pe} electron plasma frequency, u_0 maximum velocity in the electron beam

Retaining first order in *f*:

For linear diffusion, n(x,t) is found to be, for initial condition $n(x,0) = n_b exp(-(x/d)^2)$

(d is the size of electron cloud)

$$\frac{n(x,t)}{n_b} = \frac{d}{\sqrt{d^2 + 4D_{xx}t}} \exp\left(-\frac{\left(x - \frac{u_0 t}{2}\right)^2}{d^2 + 4D_{xx}t}\right)$$

with
$$D_{xx} = \frac{u_0}{4D_0} \left(\ln \frac{u_0}{v_{\min}} - 1 \right)$$
 (where $D_0 = \pi \frac{\omega_{pe}}{u_0} \frac{n_b}{n_0}$)

Consider spectral emission at the spatial peak, $x \approx u_0 t/2$ and near the spectral peak $v \approx 4/5 u_0$.

Peak in beam electron density given by:

$$n(x,t)|_{t=\frac{2x}{u_0}} = \frac{n_b}{\sqrt{1 + \frac{2xu_0n_0}{\pi\omega_{pe}n_bd^2}}}$$

H-component of EM radiation is saturated: consider spectral energy density (W_H^{EM}) to be proportional to energy of Langmuir waves (Melrose, 1980)

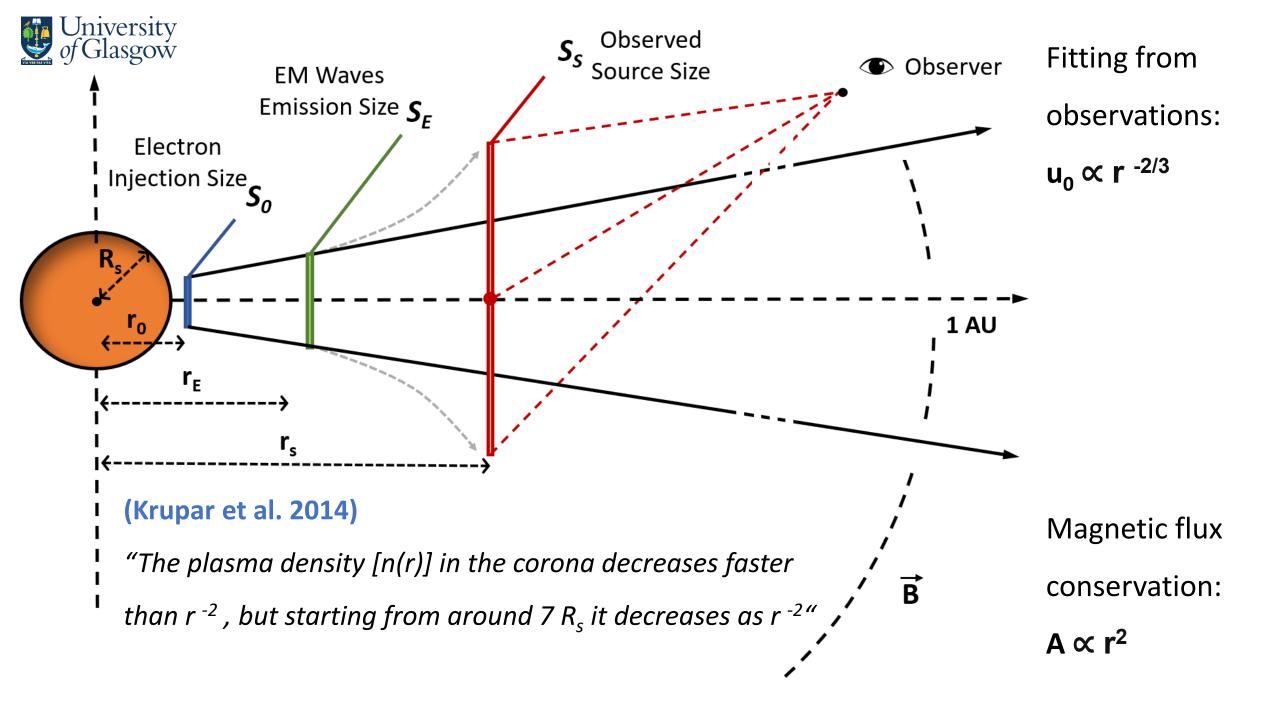
Spectral flux density S_H of H -component at 1 AU given by

$$S_H = W_H^{\rm EM} \frac{\mathrm{d}k}{\mathrm{d}\omega} A v_{\rm g} \frac{1}{4\pi R_{1 \rm AU}^2}$$

 $dk/d\omega = 1 / v_a$ v_a = group velocity of the EM waves A = area of the source $R_{1AU} = 1$ AU distance Х ro r

Rewrite beam position as $x = r - r_0$, r_0 is the point of electron injection, taken here to be $1 R_s$

$$S_H \propto \frac{n_b u_0^3 A}{\omega_{pe}} \frac{1}{\sqrt{1 + \frac{2(r-r_0)u_0 n_0}{\pi \omega_{pe} n_b d^2}}}$$



Maximum at 1 MHz

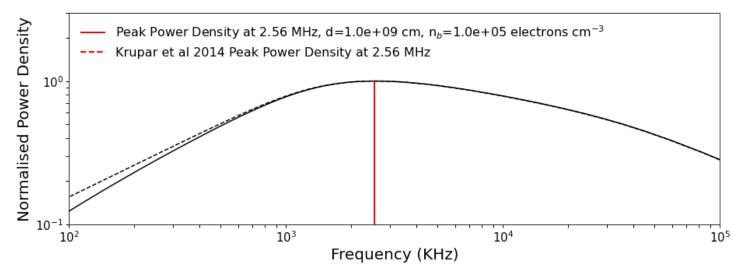
Observations show maximum in flux density around 1 MHz (Krupar et al. 2014, Raja et al 2022)

(Krupar et al. 2014) $Au_0^3 n_b \propto 1/r^2$ —

$$S_H \propto \frac{1}{r^2 f_{pe}} \frac{1}{\sqrt{1 + \frac{2(r-r_0)u_0 n_0}{\pi \omega_{pe} n_b d^2}}}$$

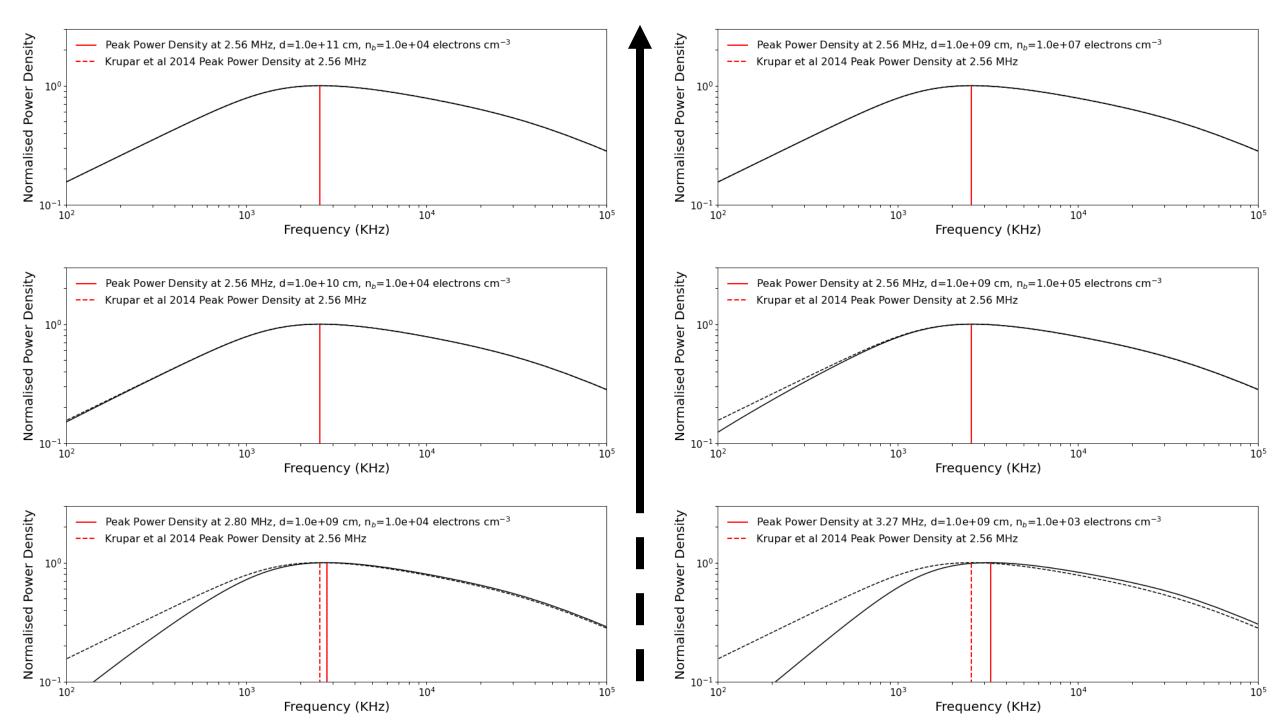
Compare this to result from Krupar et al. (2014):

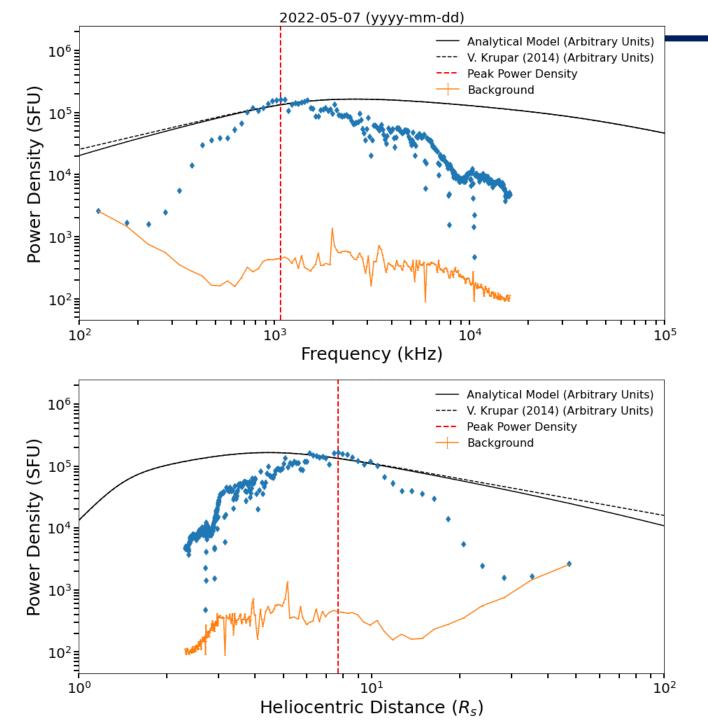
$$S_H \propto rac{1}{r^2 f_{pe}}$$



Normalised power density as a function of frequency. It's apparent that the frequency of peak power density resulting from our model approaches the one calculated in Krupar 2014.

(Preliminary)





University of Glasgow

Power density predicted by analytical model over-plotted to observed power density from 07/05/2022 event

Orange curve represents subtracted background

Data-points seen here as blue diamonds

Next Steps...

- 1. Keep investigating how **changing parameters** affects the analytical solution (e.g. n_b, d, r₀, ...)
- 2. Find peak in flux density for **non-linear diffusion**

3. Try to **predict flux density** and compare with type III observations

Thanks!