

Double-peaked dust impact electrical signatures partially explained

Samuel Kočiščák, Arnaud Zaslavsky, Nicole Meyer-Vernet, Ingrid Mann, Jakub Vaverka, and Audun Theodorsen

samuel.kociscak@uit.no

RPW meeting 2023, Praha

Outline

- Introduction
 - Interplanetary dust
 - Impact ionization
- What we found with RPW
 - New signals observed
 - Unsurprising
 - Surprising

Introduction

Solar system's dust cloud

- Dynamic
- Sources
 - Comets
 - Interstellar dust
- Sinks
 - P-R drag
 - Ejection

Fig. 1 from Mann et al. (2019)

Hypervelocity collisions

Material strength \ll inertial stress Melting steel: $1 \frac{MJ}{kg} \Rightarrow 700m/s$ Burning coal: $24 \frac{MJ}{kg} \Rightarrow 3,5km/s$ Ionizing Na: $21 \frac{MJ}{kg} \Rightarrow 3,2km/s$ Ionizing H: $0.55 \frac{GJ}{kg} \Rightarrow 18km/s$

Speeds in space

Earth's orbital speed $\approx 30 km/s$ Sun relative to ISM $\approx 25 km/s$

© ESA, from Wikipedia

Spacecraft's floating potential

Impact ionization

Impact cloud:

- Neutrals OO
- Electrons ⊖
- lons 🕀
- Partial thermalization

Dust impact signature - potential

What we found in RPW data

(solo_L2_rpw-tds-surv-tswf-e_YYYYMMDD_V0X.cdf)

3x monopole (ideal)

3x monopole (more realistic)

Antennas compared

- Technically: monopoles
 reconstructed from XLD1
- Ternary plot of maxima:

V1 + V2 + V3 = 100%

 3 antennas show different amplitudes

A very close look (1/6)

20200709_V04_event_176_of_289

A very close look (2/6)

20200711_V04_event_303_of_321

A very close look (3/6)

20200824_V03_event_44_of_134

A very close look (3/6)

20200824_V03_event_44_of_134

A very close look (4/6)

20200828_V03_event_0_of_37

A very close look (5/6)

20200709_V04_event_10_of_289

A very close look (6/6)

20200712_V04_event_297_of_376

An observation

- 2 peaks of the same polarity
- Primary (first in time)
 - Consistent \Rightarrow body
 - Irregularities $\pm 50\%$
- Secondary (second in time)
 - Inconsistent \Rightarrow antenna

Primary peak

Mean primary peak – understood!

Expected, understood!

Asymmetry of the primary peak

24

Secondary peak

Secondary peak's delay

 10^{3} Delay of the strongest peak $[\mu S]$ $100 - 300 \, \mu s$ Ion motion 10^{2} timescale! Mean Relative Median 10 amplitude - 10^{0} 10^{2} 250 important? 0 10 Strongest peak / primary peak [1] Frequency [1]

Pantellini effect for cylindrical antennas

Photoelectron return current blocked

Possible current towards the body? Opinions?

[1] Pantellini, F., Belheouane, S., Meyer-Vernet, N., & Zaslavsky, A. (2012). Nano dust impacts on spacecraft and boom antenna charging. *Astrophysics and Space Science*, *341*, 309-314.

Fig. 2 from [1]

Secondary amplitudes

Electrostatic induction can't explain

Additional amplification must be present!

Adapted Pantellini:

$$V_{sec} \propto V_{pri}^{\frac{2}{3}}$$

Conclusions

- 1. We observed double-peaked dust impact signatures for the first time. Tricky to use MAPM data.
- 2. Primary peak is found consistent with expectations
- 3. Secondary peak is new!
 - Time-scale consistent with ion motion
 - Possibly explained with Pantellini process

Kočiščák, S., Mann, I., Meyer-Vernet, N., Theodorsen, A., Vaverka, J., and Zaslavsky, A.: **Impact Ionization Double Peaks Analyzed in High Temporal Resolution on Solar Orbiter**, EGUsphere [preprint], https://doi.org/10.5194/egusphere-2023-2067, 2023.

UiT The Arctic University of Norway

CNN dust classification – higher sampling rate

Andreas Kvammen, **Samuel Kočiščák,** et al.

samuel.kociscak@uit.no

RPW meeting 2023, Praha

Big thanks to

the RPW & TDS team for their work and support.

We highly appreciate the nice data structure, even though we might complain time-to-time, we love the data.

CNN classification

TDS dust recognition performance

- Golb. average: 15 000 TDS triggers
 - 2 000 TDS dust -> 1 640 +, 360 ⇒ 82% spec.
 - 13 000 TDS no-dust -> 918 +, 12 082 ⇒ 64% sens.
- FEB-APR/2022: 17 842 TDS triggers
 - 712 TDS dust -> 420 +, 290 ⇒ 59% spec.
 - 17 130 TDO no-dust -> 94 +, 17 036 ⇒ 82% sens.

Fig. 10 from Kvammen et al. (2023)

Project Objective and Methodology

- Project Objective Develop a fully automated dust detection tool with a high (≥ 95%) accuracy
- Methodology Classification using supervised machine learning techniques Input: Observed signal — Output: Binary label (Dust or No Dust)
- Supervised learning Manually labeled observations are used to train and test the machine learning classifiers

Manual labeling

Code and data availability

- RPW data— Solar Orbiter data are made available by LEISA Observatory at: <u>https://rpw.lesia.obspm.fr/roc/data/pub/solo/rpw/data/L</u> 2/tds_wt_e/
- Code, Training, Testing The trained classifiers, the code and manually labelled data sets are available at: https://github.com/AndreasKvammen/ML_dust_detection on with included user instructions
- Article For more details, see our article titled Machine learning detection of dust impact signals observed by the Solar Orbiter, published at Annales Geophysicae: <u>https://angeo.copernicus.org/articles/41/69/2023/</u>
- Contact If you have trouble using these tools or other requests, please contact me at: Andreas.kvammen@uit.no
- References

Mann, I., Nouzák, L., Vaverka, J., Antonsen, T., Fredriksen, Å., Issautier, K., ... & Zaslavsky, A. (2019, December). Dust observations with antenna measurements and its prospects for observations with Parker Solar Probe and Solar Orbiter. In Annales Geophysicae (Vol. 37, No. 6, pp. 1121-1140). Copernicus GmbH.

Zaslavsky, A., Mann, I., Soucek, J., Czechowski, A., Píša, D., Vaverka, J., ... & Vaivads, A. (2021). First dust measurements with the Solar Orbiter Radio and Plasma Wave instrument. Astronomy & Astrophysics, 656, A30.

Maksimovic, M., Bale, S. D., Chust, T., Khotyaintsev, Y., Krasnoselskikh, V., Kretzschmar, M., ... & Zouganelis, I. (2020). The solar orbiter radio and plasma waves (RPW) instrument. Astronomy & Astrophysics, 642, A12.

Kočiščák, S., Kvammen, A., Mann, I., Sørbye, S. H., Theodorsen, A., & Zaslavsky, A. (2023). Modeling Solar Orbiter dust detection rates in the inner heliosphere as a Poisson process. Astronomy & Astrophysics, 670, A140.

Higher sampling rate data

Higher sampling rate inclusion

- Before 2/2022:
 - $f_s = 262 \ ksps$
- After 2/2022 variable:
 - $f_s = 524 \ ksps$
 - While $R \leq 0.5 AU$
- The detection algorithm trained on $f_s = 262 \ ksps$
- Padding + subsampling

New observed flux

- The flux seems quite continuous
- We now have nearly 3 years, i.e. 8334 grains
- Possibility to make this an L3 product?

Thank you for your questions!

Backup

Mean primary peak – understood!

Adapted Pantellini effect

 $V_{sec} \propto Q_{ant} \propto j_{ph} w L_{submerged} \tau$

$$L_{submerged} \propto \left(\frac{V_{pr}}{n_{sw}}\right)^{\frac{1}{3}}$$

$$\tau \propto \frac{L_{submerged}}{v_{ion}}$$

$$V_{sec} \propto \frac{j_{ph}w}{v_{ion}} \left(\frac{V_{pr}}{n_{sw}}\right)^{\frac{2}{3}}$$

$$V_{sec} = \frac{\Gamma}{C_{ant}} Q_{ant}$$

$$Q_{ant} = \int_{0}^{\tau} j_{ph} w L(t) dt \approx \frac{1}{2} j_{ph} w L_{sub} \tau$$

$$n_{cloud} = \frac{3Q}{4\pi e L_{sub}^{3}} \Rightarrow L_{sub} = \left(\frac{3Q}{4\pi e n_{sw}}\right)^{\frac{1}{3}}$$

$$\tau = \frac{L_{max}}{v_{ion}}$$

$$V_{sec} \approx \frac{\Gamma^{\frac{1}{3}} j_{ph} w}{2C_{ant} v_{ion}} \left(\frac{3V_{pr} C_{sc}}{4\pi e n_{sw}}\right)^{\frac{2}{3}}$$

The image charge

- No difference between "close" and "touching"
- We only see the change once the charge gets far

Outlook

- Nanodust
- Comet nishimura
- Inclination

20 nm @ solar max., Fig. 3 from Poppe & Lee (2022)

Spatial distribution

Solar attraction ↓ Accumulation

Solar repulsion ↓ Depletion

β-meteoroids

 $F_{effective} = (1 - \beta) \cdot F_{g}$

RC decay

$$RC_{sc} = C_{sc} \left(\frac{dI}{d\phi_{sc}}\right)^{-1} \approx C_{sc} \left(\frac{dI_{ph}}{d\phi_{sc}}\right)^{-1} \bigstar \phi_{sc}$$

$$\begin{aligned} \frac{dI_{ph}}{d\phi_{sc}} \Big|_{\phi_{sc}} &= \frac{eI_{ph}(\phi_{sc})}{k_B T_{ph}} =^* \frac{eI_e(\phi_{sc})}{k_B T_{ph}} \qquad I_{ph}^-(\phi_{sc}) \approx I_{sw}^-(\phi_{sc}) \\ \tau_{sc} &= RC_{sc} \approx \frac{C_{sc} k_B T_{ph}}{e^2 n_{sw}^- S v_{th}^-} \\ C_{sc} &\approx 350 pF \\ k_B T_{ph} &\approx E(\lambda_{UV}) - W \approx 3eV \end{aligned}$$

Photoelectron density [A/eV]

Iph

φ'sc

Spacecraft currents at $\phi = 0$

$$I_{tot} = I_{SW}^+ - I_{SW}^- + I_{ph}^- + I_{se}$$

$$S \approx 30m^2$$
; $S_{front} \approx 6m^2$

 $I_{SW}^{+} \approx e \, n_{SW}^{+} \left(S_{front} v_{SW} + S v_{th}^{+} \right)$ $I_{SW}^{-} \approx e \, n_{SW}^{-} \left(S_{front} v_{SW} + S v_{th}^{-} \right)$ $I_{ph}^{-} \approx e \, \phi_{ph}^{UV} S_{front} Y$ $n_{SW}^+ \approx n_{SW}^- \approx 10 cm^{-3} \approx 10^7 m^{-3}$

 $v_{SW} \approx 400 \ km/s$ $v_{th}^+ \approx 15 \ km/s$ $v_{th}^- \approx 600 \ km/s$ $v_{\oplus} \approx 30 \ km/s$

$$\phi_{ph}^{UV} \approx 4 \cdot 10^{14} \ m^{-2} s^{-1}$$

$$Y \approx 1$$

Detection rate - inbound and outbound

- Hypothesis: dust is moving outward

 R ~ *v*_{rel} = |*v*_{sol0} − *v*_{dust}|
- Non-parametric regression
 - Bootstrap
- Background?

Charge yield

- $Q \propto mv^4$
 - Ionization degree $\nearrow v$
- Need to measure charge
- Hard to separate *m*; *v*

 $5 \cdot 10^{-17 \pm 1} kg$ Fe dust, Accelerator Results

Based on Colette et al. (2014)

from Mann et al. (2019)

Spacecraft floating potential

PLASMA	Earth	Venus I	Mercury Aph	Mercury Peri	SO peri	SP+ 1st Peri	0,11 UA	SP+ Sci ops	0,067 UA S	P+ Last Peri
CASE (AU)	1	0,72	0,46	0,3	0,25	0,162	0,11	0,093	0,067	0,044
CURRENTS on SC (A)										
Thermal electrons net	-2,55E-05	-4,98E-05	-1,30E-04	-2,68E-04	-4,76E-04	-9,39E-04	-2,63E-03	-3,78E-03	-6,41E-03	-2,46E-02
lons net	1,52E-06	3,08E-06	8,05E-06	2,07E-05	2,93E-05	6,61E-05	1,73E-04	2,37E-04	4,00E-04	1,56E-03
Photoelectrons										
Collected	-7,89E-05	-1,53E-04	-3,73E-04	-9,00E-04	-1,25E-03	-3,16E-03	-7,01E-03	-9,89E-03	-1,96E-02	-4,52E-02
Emitted	1,01E-04	1,94E-04	4,75E-04	1,12E-03	1,61E-03	3,83E-03	8,31E-03	1,16E-02	2,24E-02	5,19E-02
Net	2,17E-05	4,05E-05	1,02E-04	2,17E-04	3,54E-04	6,75E-04	1,30E-03	1,73E-03	2,77E-03	6,75E-03
2nd electrons										
Collected	-1,19E-05	-2,59E-05	-8,18E-05	-2,11E-04	-3,89E-04	-1,07E-03	-3,16E-03	-5,01E-03	-8,71E-03	-4,62E-02
Emitted	1,41E-05	3,18E-05	1,02E-04	2,40E-04	4,82E-04	1,26E-03	4,24E-03	6,74E-03	1,29E-02	6,14E-02
Net	2,27E-06	5,97E-06	1,99E-05	2,86E-05	9,26E-05	1,87E-04	1,08E-03	1,73E-03	4,15E-03	1,52E-02
All populations										
Collected	-1,15E-04	-2,26E-04	-5,77E-04	-1,36E-03	-2,09E-03	-5,10E-03	-1,26E-02	-1,84E-02	-3,43E-02	-1,14E-01
Emitted	1,15E-04	2,26E-04	5,77E-04	1,36E-03	2,09E-03	5,08E-03	1,25E-02	1,84E-02	3,53E-02	1,13E-01
Net	-3,60E-09	-1,75E-07	1,31E-07	-1,55E-06	-2,46E-07	-1,02E-05	-8,67E-05	-7,72E-05	9,09E-04	-1,07E-03
Recollection (%)										
Photoelectrons	78,44	79,11	78,54	80,59	77,99	82,38	84,39	85,08	87,61	86,99
2nd electrons	83,97	81,24	80,40	88,09	80,79	85,07	74,59	74,34	67,74	75,24
POTENTIALS										
Spacecraft (V)	13,53	13,89	13,39	7,91	6,29	5,21	1,22	-0,69	-4,26	-16,23
Ram min position (m)	NA	NA	NA	3,02	1,66	0,99	0,56	0,44	0,37	0,23
Wake min position (m)	NA	NA	NA	3,41	2,93	2,16	1,65	1,52	1,13	0,84
Ram min value (V)	NA	NA	NA	-0,23	-1,13	-2,84	-7,23	-8,88	-13,13	-25,42
Wake min value (V)	NA	NA	NA	-0,47	-1,07	-3	-7,06	-9,39	-14,01	-31,3
Potential barriers for seconda	ries (V)									
Ram	13,53	13,89	13,39	-8,14	-7,42	-8,05	-8,45	-8,19	-8,87	-9,19
Wake	13,53	13,89	13,39	-8,38	-7,36	-8,21	-8,28	-8,70	-9,75	-15,07
OTHER VALUES										
Rate 2nd-emission/the-coll	-0,56	-0,64	-0,78	-0,90	-1,01	-1,34	-1,61	-1,78	-2,00	-2,50
Coll-The/Coll-ALL (%)	22,21	22,01	22,51	19,70	22,78	18,42	20,85	20,48	18,68	21,49
Coll-2nd/Coll-ALL (%)	10,35	11,44	14,17	15,55	18,62	20,95	25,02	27,17	25,36	40,40
Coll-photo/Coll-ALL (%)	68,77	67,91	64,71	66,27	60,00	61,92	55,50	53,63	57,13	39,48

from Guillemant et al. (2013)