

Low Frequency Receiver – LFR

status

- In-flight update of the LFR FSW since 14/03/2023 => version 3.3.0.16
- Ground segment software

Thomas Chust, Rodrigue Piberne, and the LFR team

LFR nominal inputs : **3 B** + **2 E** + **1 V** (≤ **10** kHz),

The LFR signal processing, based on a FPGA, provides routinely,

- waveforms (SWF & CWF)
- spectral matrices (ASM & BP2)
- basic wave parameters (BP1)

at different time and frequency resolutions:

Spectral matrices (ASM, BP2) & Basic wave parameters (BP1)

1...

BP1 PB:

"Instantaneous" 5 x 5 *B-E* spectral matrix (256-point FFT)

$SM\left(\alpha^{(m)}\right)$	$B_1B_1^*$ cc	$egin{array}{c} B_1B_2^*\ B_2B_2^* \end{array}$	$B_1B_3^*$ $B_2B_3^*$	$B_{1}E_{1}^{*}$ $B_{2}E_{1}^{*}$	$B_1E_2^*$ $B_2E_2^*$	
Sive $(\omega_j) =$	CC	<i>CC</i>	B_3B_3	B_3E_1	B_3E_2 $E E^*$	
					$E_1 E_2$ E_2	
	CC	CC	CC	CC	$\boldsymbol{E}_{2}\boldsymbol{E}_{2}$	
<i>m</i> = 0, 1, 2 for F0, F1, F2						

Mono-k assumption: (Means, JGR, 1972) (Samson & Olson, GJRA, 1980) $\mathbf{n} \times \mathbf{E} = \frac{\omega}{k} \mathbf{B} \longrightarrow$ $\mathbf{BP1} \ \mathbf{ELLIP}:$ $\mathbf{BP1} \ \mathbf{DOP}:$ $\mathbf{BP1} \ \mathbf{SX}:$ $\mathbf{BP1} \ \mathbf{VPHI}:$ $\mathbf{BP1} \ \mathbf{VPHI}:$ $\mathbf{BP2} \ \mathbf{AUTO}:$ $\mathbf{BP2} \ \mathbf{CROSS}:$ Time Averaged Spectral Matrix (ASM)

ASM
$$(\omega_{j}^{(m)}) = \frac{1}{N_{SM}^{(m)}} \sum_{k=1}^{N_{SM}^{(m)}} SM_{k} (\omega_{j}^{(m)}) = \langle SM \rangle_{time}$$

Frequency average ...
 $S(\omega_{j}^{(m)}) = \langle ASM \rangle_{frequency}$
before computations of the BPs
(i.e. wave parameters)

Power spectrum of the magnetic field (**B**) Power spectrum of the electric field (**E**) => kcoef Wave normal vector (from **B**) Wave ellipticity estimator (from **B**) Wave planarity estimator (from **B**) X_{SRF} (radial)-component of the Poynting vector => kcoef Phase velocity estimator => kcoef (patch needed)

Autocorrelations Normalized cross correlations

LFR FSW Update 3.3.0.16

First goal :

- implement the calculation of a phase velocity estimator VPHI (=> BP1)

Positive side effects :

- few optimisations and code refactoring
- few bug fixed
- in particular, the time averaging of the instaneous spectral matrices @ F1 & F0

=> ASM, BP2 and BP1 (full time coverage now, 1/8 before ...)

Implementation :

- another kcoeff approach (before: direct use of kcoeffs for computation of the BP1s)
- global approach of the calibration and transformation into SRF of the ASM
- KCOEFFs are now used to upload calibration matrices (including change of reference frame) to be applied, after interpolation, on the ASM

LFR set of Basic Parameters after FSW update 3.3.0.16

"Instantaneous" 5 x 5 spectral matrix (256-point FFT)

$\mathbf{SM}\left(\boldsymbol{\omega}_{j}^{\left(m ight) } ight) =% \left(\mathbf{\omega}_{j}^{\left(m ight) } ight) =% \left(\mathbf{\omega}_{$	$B_1B_1^*$ cc cc	$B_1B_2^*$ $B_2B_2^*$ CC	$B_1 B_3^* \ B_2 B_3^* \ B_3 B_3^*$	$B_{1}E_{1}^{*} \ B_{2}E_{1}^{*} \ B_{3}E_{1}^{*}$	$egin{array}{c} B_1 E_2^* \ B_2 E_2^* \ B_3 E_2^* \end{array}$
	СС	СС	СС	$E_{1}E_{1}^{*}$	$E_1 E_2^*$
	СС	СС	СС	СС	$E_2 E_2^*$
<i>m</i> = 0, 1, 2 for F0, F1, F2					•

Mono-k assumption: (Means, JGR, 1972) { (Samson & Olson, GJRA, 1980) { $\mathbf{n} \times \mathbf{E} = \frac{\omega}{k} \mathbf{B} \longrightarrow$ $\frac{S_{ij}}{\sqrt{S_{ij} S_{ij}}} \longrightarrow$ BP1 PE: BP1 NVEC: BP1 ELLIP: BP1 DOP: BP1 SX: BP1 VPHI: BP2 AUTO: BP2 CROSS:

BP1 PB:

Time Averaged Spectral Matrix (ASM)

ASM
$$(\omega_{j}^{(m)}) = \frac{1}{N_{SM}^{(m)}} \sum_{k=1}^{N_{SM}^{(m)}} SM_{k} (\omega_{j}^{(m)}) = \langle SM \rangle_{time}$$

Calibration, SRF, and frequency average ...

S $(\omega_j^{(m)}) = \langle \mathbf{ASM}_{calibrated}_{SRF} \rangle_{frequency}$

... before computations of the BPs (i.e. wave parameters)

Power spectrum of the magnetic field (**B**) Power spectrum of the electric field (**E**) Wave normal vector (from **B**) Wave ellipticity estimator (from **B**) Wave planarity estimator (from **B**) X_{SRF} (radial)-component of the Poynting vector Phase velocity estimator

Autocorrelations Normalized cross correlations

LFR ground segment software

Current status

>L1 to L1R pipeline produces : - CWF in SBM1, SBM2 and SURV mode.

- SWF in SURV mode.

- >L1 to L2 pipeline produces : BP1 in SBM1, SBM2 and SURV mode.
 - BP2 in SBM1, SBM2 and SURV mode.
 - ASM in SURV mode.

Summary plots for BP1, BP2 and ASM (L1 and L2) and CWF and SWF (L1).

Recent updates

Management of the new calibration induced by the update of the onboard calibration (new k-coefficients). This concerns only data after the 14/03/2023. Deliver summary plots for BP1, BP2 and ASM in SRF frame.

Upcoming upgrades

Create new L3 products for ASM, BP1 and BP2 and associated summary plots.

=> Timing problems encountered

LFR ground segment software L3 timing problems

What are the LFR L3 ?

The L3 for BP1, BP2 and ASM are concatenations of the L2 according to the frequency axis:

Ex: For L2 SURV BP1, ellipticity in normal mode is defined by: ELLIP N F0, ELLIP N F1, ELLIP N F2

that depend on:

Epoch_N_F0, Epoch_N_F1 and Epoch_N_F2.

For L3 SURV BP1, ellipticity in normal mode is defined by: ELLIP N

that depends on:

Epoch_N.

What is the problem ?

The Epoch of the L3 is a mean of the Epochs of the L2. Meanwhile there should be always the same number of times for F0, F1 and F2 (by construction), it appears that sometimes, the Epochs of L2 data do not have the same number of times.

LFR ground segment software L3 timing problems

When does it happen?

A test was performed over 3 months (April, May and June 2020). Results are:

3 days with 1 more F2 point
2 days with 1 more F0 point
1 day with a lack of 3 F2 points
1 day with a lack of 2 F2 points
3 days with a lack of 1 F0 point
4 days with a lack of 1 F2 point
1 day with different times for each frequency

15 days with problems / 91 days

LFR ground segment software L3 timing problems

Why?

Possible causes are:

- Telecom errors?
- Decommutations errors? (Could it be checked by LESIA? Issue on gitlab)
- Instrument errors?

What to do?

- \Rightarrow Try to find the cause and solve the problem at L1 level
- \Rightarrow If not possible, put fill values at L3 level.

More complicated that it seems (need to create a new Epoch).

Conclusion

- LFR FSW update 3.3.0.16 (since 14/03/2023) is working well so far
- The switch from V12_AC to V13_AC (since 21/08/2023) would require an update of the kcoeffs in the near future (Sx and VPHI)
- The implementation of the L3 LFR spectral products is ongoing

Additional slides

LFR spectral frequencies

(1) Depending on the frequency channel, **selection** of 96, 104 or 88 consecutive **frequency bins** among 128 (N_{FFT} = 256) of the *time* averaged spectral matrices.

(2) Then, the ASMs are averaged over packets of N_{freq} (8 or 4) consecutive bins :

Has been done at the beginning of STP103 (06/07-12/07)

$\left\{ \begin{array}{l} \mathsf{PE} : \text{ transformation into SRF (2 ortho comp.)} \\ \mathsf{SX} : \text{ same for B} + \mathsf{E}\text{-B relative calibration} \end{array} \right.$

sed: SOLO_CAL_RCT-LFR-SCM_V2019 : AC_DIFF_G5

R = 0 2020-06-18

requency	KCOETT_1	KCOETT_2	KCOETT_3	KCOETT_4	KCOETT_5	KCOETT_6	KCOETT_/	KCOETT_8	KCOETT_9	KCOETT_10	KCOETT_II	KCOETT_12	KCOETT_13	KCOETT_14	KCOETT_15	KCOETT_10
(Hz)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)
1968.00	1.000000	1.250000	1.000000	-0.000000	0.680709	0.084467	-0.075378	0.002689	-0.006633	-0.004708	-0.828601	-0.100358	-0.615400	-0.121279	-0.684965	-0.072993
2736.00	1.000000	1.250000	1.000000	-0.000000	0.683845	0.046790	-0.077284	0.006480	-0.005590	-0.004755	-0.831959	-0.057230	-0.610072	-0.080905	-0.688697	-0.009801
3504.00	1.000000	1.250000	1.000000	-0.000000	0.684479	0.023171	-0.079053	0.009339	-0.004768	-0.004780	-0.831838	-0.030256	-0.601822	-0.055823	-0.691407	0.035243
4272.00	1.000000	1.250000	1.000000	-0.000000	0.684285	-0.000440	-0.080385	0.012018	-0.003927	-0.004456	-0.830962	-0.002683	-0.592844	-0.031602	-0.694529	0.078141
5040.00	1.000000	1.250000	1.000000	-0.000000	0.683102	-0.032862	-0.080902	0.015643	-0.003207	-0.004357	-0.828408	0.035232	-0.582548	0.000017	-0.694929	0.128425
5808.00	1.000000	1.250000	1.000000	-0.000000	0.679045	-0.077452	-0.080685	0.020638	-0.002670	-0.004105	-0.823017	0.088014	-0.569249	0.042608	-0.689826	0.190891
6576.00	1.000000	1.250000	1.000000	-0.000000	0.670473	-0.129371	-0.079861	0.026565	-0.002390	-0.003748	-0.812267	0.150402	-0.551233	0.090651	-0.677161	0.259483
7344.00	1.000000	1.250000	1.000000	-0.000000	0.660435	-0.171886	-0.078807	0.031303	-0.002101	-0.003724	-0.799841	0.200498	-0.530949	0.130834	-0.663375	0.317959
8112.00	1.000000	1.250000	1.000000	-0.000000	0.660779	-0.168973	-0.079255	0.030848	-0.001279	-0.003575	-0.798949	0.196290	-0.517772	0.135450	-0.669077	0.330162
8880.00	1.000000	1.250000	1.000000	-0.000000	0.677499	-0.077787	-0.082895	0.018871	-0.000068	-0.003632	-0.816823	0.084936	-0.519847	0.073541	-0.715673	0.249207
9648.00	1.000000	1.250000	1.000000	-0.000000	0.681470	0.022690	-0.084661	0.006578	0.000491	-0.003514	-0.819349	-0.036598	-0.515658	0.008594	-0.754707	0.152344
152.00	1.000000	1.250000	1.000000	-0.000000	0.250260	0.644123	-0.026544	-0.050484	-0.003991	-0.011837	-0.308949	-0.769155	-0.238878	-0.832557	-0.266696	-0.894962
280.00	1.000000	1.250000	1.000000	-0.000000	0.435058	0.536410	-0.045370	-0.038012	-0.004918	-0.008762	-0.530177	-0.636836	-0.422869	-0.688790	-0.463289	-0.733262
408.00	1.000000	1.250000	1.000000	-0.000000	0.533893	0.436249	-0.055709	-0.029291	-0.005497	-0.007015	-0.648099	-0.517161	-0.513439	-0.555338	-0.562708	-0.585619
536.00	1.000000	1.250000	1.000000	-0.000000	0.587681	0.359136	-0.061837	-0.022570	-0.006285	-0.006126	-0.713384	-0.424653	-0.558237	-0.453699	-0.611799	-0.472014
664.00	1.000000	1.250000	1.000000	-0.000000	0.618808	0.300719	-0.065342	-0.017659	-0.007364	-0.006185	-0.751394	-0.355742	-0.581250	-0.378724	-0.638215	-0.387033
792.00	1.000000	1.250000	1.000000	-0.000000	0.638057	0.256898	-0.067508	-0.013749	-0.007346	-0.005052	-0.774980	-0.303034	-0.594074	-0.323367	-0.652844	-0.323797
920.00	1.000000	1.250000	1.000000	-0.000000	0.650217	0.222509	-0.069381	-0.010659	-0.007270	-0.004845	-0.790133	-0.262800	-0.601775	-0.280832	-0.661824	-0.274364
1048.00	1.000000	1.250000	1.000000	-0.000000	0.659008	0.194906	-0.070656	-0.007736	-0.007396	-0.004562	-0.800838	-0.229373	-0.606966	-0.246803	-0.668286	-0.234006
1176.00	1.000000	1.250000	1.000000	-0.000000	0.665408	0.169230	-0.071854	-0.006071	-0.007568	-0.004507	-0.809481	-0.199492	-0.610956	-0.217468	-0.673320	-0.198444
1304.00	1.000000	1.250000	1.000000	-0.000000	0.670761	0.146243	-0.072662	-0.003866	-0.007289	-0.004516	-0.815947	-0.172497	-0.614190	-0.191600	-0.677752	-0.167006
1432.00	1.000000	1.250000	1.000000	-0.000000	0.674564	0.125896	-0.073488	-0.001698	-0.007126	-0.004639	-0.820815	-0.148492	-0.616342	-0.169058	-0.680765	-0.139056
1560.00	1.000000	1.250000	1.000000	-0.000000	0.677124	0.111511	-0.073890	-0.000368	-0.007175	-0.004652	-0.823828	-0.131910	-0.616715	-0.152930	-0.682387	-0.117971
1688.00	1.000000	1.250000	1.000000	-0.000000	0.677909	0.106444	-0.074376	0.000250	-0.006978	-0.004553	-0.824805	-0.125884	-0.615684	-0.145642	-0.682700	-0.106756
10.50	1.000000	1.250000	1.000000	-0.000000	-0.064163	0.691371	0.005238	-0.049219	0.001012	-0.010796	0.052509	-0.788477	0.071794	-0.856683	0.075569	-0.916724
18.50	1.000000	1.250000	1.000000	-0.000000	-0.138377	0.678801	0.008808	-0.050425	0.004210	-0.011572	0.136663	-0.788797	0.162978	-0.855399	0.174421	-0.916848
26.50	1.000000	1.250000	1.000000	-0.000000	-0.118979	0.682794	0.007025	-0.049553	0.001158	-0.010515	0.115928	-0.798322	0.146259	-0.866676	0.156269	-0.931405
34.50	1.000000	1.250000	1.000000	-0.000000	-0.086301	0.687445	0.004599	-0.050711	0.001742	-0.010776	0.079182	-0.809000	0.110229	-0.880463	0.116501	-0.944506
42.50	1.000000	1.250000	1.000000	-0.000000	-0.051160	0.691451	0.002795	-0.050467	0.002297	-0.008438	0.042965	-0.813893	0.074655	-0.888435	0.078498	-0.951999
50.50	1.000000	1.250000	1.000000	-0.000000	-0.017434	0.690637	-0.003165	-0.057706	0.007160	-0.013982	0.009704	-0.816750	0.037321	-0.898358	0.038160	-0.959488
58.50	1.000000	1.250000	1.000000	-0.000000	0.008883	0.692317	-0.001998	-0.051320	0.002576	-0.010018	-0.026732	-0.817230	0.010392	-0.894188	0.008285	-0.959643
66.50	1.000000	1.250000	1.000000	-0.000000	0.033912	0.691814	-0.006235	-0.051648	0.000089	-0.011058	-0.056269	-0.820826	-0.015915	-0.893520	-0.019992	-0.958181
74.50	1.000000	1.250000	1.000000	-0.000000	0.058759	0.689708	-0.008406	-0.051508	-0.000637	-0.010220	-0.085366	-0.818306	-0.041164	-0.890868	-0.047973	-0.954232
82.50	1.000000	1.250000	1.000000	-0.000000	0.081055	0.688097	-0.011295	-0.049474	-0.000468	-0.010783	-0.111820	-0.815674	-0.063871	-0.888986	-0.072991	-0.953335
90.50	1.000000	1.250000	1.000000	-0.000000	0.103966	0.685133	-0.012776	-0.050548	-0.001181	-0.011071	-0.137918	-0.812970	-0.087822	-0.884208	-0.099221	-0.947926
98 50	1 000000	1 250000	1 000000	-0 00000	0 122452	A 6822A3	-0 015249	-0 049152	-0 001474	-0 010516	-A 159991	-0 808639	-0 107694	- 0 880608	-0 120736	-0 945213

4

11 F0 + 13 F1 + 12 F2 = 36 frequency bins

Computation of the k-coefficients for PE

Power spectrum of the electric field

$$\left\{ E_{Y'} E_{Y'}^{*} + E_{Z'} E_{Z'}^{*} \right\} = \left\{ {}^{\mathrm{T}} \mathbf{E}_{ANT} \cdot \frac{1}{|A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}|^{2}} \left[\frac{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}{-A_{1Y'} A_{2Y'}^{*} - A_{1Z'} A_{2Z'}^{*}} - \frac{A_{1Y'}^{*} A_{2Y'} - A_{1Z'}^{*} A_{2Z'}^{*}}{|A_{1Y'}|^{2} + |A_{1Z'}|^{2}} \right] \cdot \mathbf{E}_{ANT}^{*} \right\}$$

$$= \left(\frac{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}{|A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}|^{2}} \right) S_{44} + \frac{|A_{1Y'}|^{2} + |A_{1Z'}|^{2}}{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}} S_{55} - 2 \Re \left[\frac{A_{1Y'}^{*} A_{2Y'} + A_{1Z'}^{*} A_{2Z'}^{*}}{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}} S_{45} \right] \right)$$
Calibration factor

$$PE = S_{44} k_{44}^{pe} + S_{55} k_{55}^{pe} + \Re \left[S_{45} k_{45}^{pe} \right]$$

with
$$\begin{cases} k_{44}^{pe} = 1\\ k_{55}^{pe} = \frac{|A_{1Y'}|^2 + |A_{1Z'}|^2}{|A_{2Y'}|^2 + |A_{2Z'}|^2}\\ k_{45}^{pe} = -2 \frac{A_{1Y'}^* A_{2Y'} + A_{1Z'}^* A_{2Z'}}{|A_{2Y'}|^2 + |A_{2Z'}|^2} \end{cases}$$

WARNING: The TF of BIAS and LFR are implicitly embodied in the TF matrix of ANT (just a common calibration factor)

 $X_{\rm SRF}$ -component of the Poynting vector

$$\begin{split} \langle S_{X'} \rangle &= \langle (\mathbf{E} \times \mathbf{B}^{*})_{X'} \rangle = \langle E_{Y'} B_{Z'}^{*} \rangle - \langle E_{Z'} B_{Y'}^{*} \rangle \\ &= \langle \frac{A_{2Z'} E_{1} - A_{1Z'} E_{2}}{A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}} \frac{1}{C_{1Y}^{*}} \widetilde{m}_{Z'j}^{*} B_{j}^{*} \rangle - \langle \frac{-A_{2Y'} E_{1} + A_{1Y'} E_{2}}{A_{1Y'} A_{2Z'} A_{2Y'}} \frac{1}{C_{1Y}^{*}} \widetilde{m}_{Z'j}^{*} B_{j}^{*} \rangle \\ &= \frac{(A_{2Y'} \widetilde{m}_{Y'j}^{*} + A_{2Z'} \widetilde{m}_{Z'j}^{*}) \langle E_{1} B_{j}^{*} \rangle - \langle A_{1Y'} \widetilde{m}_{Y'j}^{*} + A_{1Z'} \widetilde{m}_{Z'j}^{*} \rangle \langle E_{2} B_{j}^{*} \rangle}{\langle A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'} \rangle C_{1Y}^{*}} \\ \hline \\ \textbf{Calibration factor} \\ &= \sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}} \langle A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'} \rangle C_{1Y}^{*} \rangle \frac{\langle A_{2Y'} \widetilde{m}_{Y'j}^{*} + A_{2Z'} \widetilde{m}_{Z'j}^{*}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} S_{4j} - \frac{A_{1Y'} \widetilde{m}_{Y'j}^{*} + A_{1Z'} \widetilde{m}_{Z'j}^{*}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} S_{5j} \end{bmatrix} \\ \hline \\ \textbf{SX'} = S_{41} k_{41}^{\text{sx'}} + S_{42} k_{42}^{\text{sx'}} + S_{43} k_{43}^{\text{sx'}} + S_{51} k_{51}^{\text{sx'}} + S_{52} k_{52}^{\text{sx'}} + S_{53} k_{53}^{\text{sx'}} \\ \text{with} \\ \begin{cases} k_{4j}^{\text{sx'}} = + \frac{A_{2Y'} \widetilde{m}_{Y'j}^{*} + A_{2Z'} \widetilde{m}_{Z'j}^{*}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} \times \exp \left[i \left(\varphi_{C_{1Y}} - \varphi_{A_{1Y'}A_{2Z'} - A_{1Z'}A_{2Y'}}\right)\right] \end{cases} j = 1, 2, 3 \end{cases} \end{aligned}$$

WARNING: As for ANT, the TF of LFR is implicitly embodied in the TF matrix of SCM (just a common calibration factor)