

Angular dependence of rise- and decay-time measurements using multi-spacecraft solar radio observations

Nicolina Chrysaphi^{1,2,3}

M. Maksimovic², E. Kontar³, A. Vecchio^{4,2}, X. Chen³, and K. Pesini⁴

¹LPP, Sorbonne University, France ²LESIA, Observatoire de Paris, Meudon, France ³University of Glasgow, UK ⁴Radboud University Nijmegen, The Netherlands

RPW Consortium Meeting 2 October 2023

Radio-wave Propagation Effects

Figure adapted from Chrysaphi PhD thesis (2021).

Free-space propagation:

density inhomogeneities:

Density inhomogeneities in the corona affect the propagation of photons

 \implies Photons can be scattered, refracted, and absorbed

Refractive index μ : ٠

$$\mu^2 = 1 - \frac{f_{pe}^2}{f^2}$$

- Important when emitted $f \approx f_{pe}$ •
- Frequency-dependent \implies lower frequencies are affected more

- Scattering dominates the observed properties
- True (intrinsic) properties of radio sources are distorted

Anisotropic Scattering

Evaluating Isotropic Scattering

SCIENCES SORBONNE

UNIVERSITÉ

nicolina.chrysaphi@lpp.polytechnique.fr

- Compared simulations to observed Type III properties over a large range of frequencies
- Isotropic scattering fails to simultaneously describe both observed properties

Anisotropy needed

Kontar et al. 2019, ApJ, 884, 122

- Anisotropic scattering means that photon propagation is **directional** (mushroom-like shape)
 - ⇒ observer's position is important

Size and Position vs Viewing Angle

SCIENCES SORBONNE

UNIVERSITÉ

Amplitude vs Viewing Angle

Decay time vs Observer's position

Decay Time

Is the decay time also affected by the observer's position?

Why examine the decay time?

- Decay time defined by scattering
- Used as proxy for estimating scattering strength
- If dependent on angular separation, measurements will need correction

Simulation Prediction

- Used state-of-the-art 3D ray-tracing simulations (Kontar et al. 2019, ApJ, 884, 122)
- **Prediction:** No dependency of the decay time on the observer's position

10

Chrysaphi et al. (2023, submitted)

۲

۲

٠

۲

Multi-vantage observations

- Multi-spacecraft observations of single (isolated) Type III bursts R₀ Used data from: Solar Orbiter PSP STEREO-A WIND θ_{H} Selection criteria reduced analysed Type III bursts to 11 **Langmuir waves** observed by one of the spacecraft ⇒ spacecraft location taken as radio source location
- (3D) angular separation θ calculated in the plane of the two spacecraft, with the Sun-source axis taken as the origin
- Considered the Euclidean distance between the source and spacecraft

Chrysaphi et al. (2023, submitted)

Fitting the entire light curve

Decay and Rise time vs Angle

SCIENCES SORBONNE

UNIVERSITÉ

nicolina.chrysaphi@lpp.polytechnique.fr

Decay and Rise time vs Distance

SORBONNE UNIVERSITÉ

nicolina.chrysaphi@lpp.polytechnique.fr

Direct comparison

• Similar time profiles despite that recorded frequencies are not identical

Chrysaphi et al. (2023, submitted)

- τ_r/τ_d found to range between 0.31 0.8 for frequencies between ~275 550 kHz
- Studies at higher frequencies (up to 130 MHz) find τ_r/τ_d ranging between 0.6 0.8
- **Result:** No frequency dependency
- ⇒ Rise time is affected by scattering effects in a proportionate manner to the decay time

16

Conclusions

- Scattering is anisotropic, leading to highly-directional emissions
- ⇒ Consider **observer's position**
- Decay & Rise time: No systematic trend between measurements at various observer positions at comparable frequencies
- ⇒ Decay & Rise times are the only measurements that can be trusted irrespective of the observer's location
- \Rightarrow do not require a correction
- Rise-to-decay time ratio: No frequency dependency
- \Rightarrow Rise time also dictated by scattering effects