

INSTITUTET FÖR RYMDFYSIK Swedish Institute of Space Physics

Compiling a list of SolO IP shocks and its application to studying the dynamics of ion reflection

A. P. Dimmock, M. Gedalin, A. Lalti, D. Trotta, Yu. V. Khotyaintsev, D. B. Graham, A. Johlander, R. Vainio, X. Blanco-Cano, P. Kajdic, C. J. Owen, and R. F. Wimmer-Schweingruber

andrew.dimmock@irfu.se

RPW consortium meeting #27 (online) 2-4 October 2023

Interplanetary Shock Signatures (s/c frame)

Andrew P. Dimmock | IRF Uppsala, Sweden | andrew.dimmock@irfu.se

Database of Heliospheric Shock Waves Method documentation

E. Lumme, E. K. J. Kilpua, A. Isavnin, K. Andreeova

October 31, 2019

In order to be included in the database the following upstream to downstream jump conditions had to be fulfilled:

$$\frac{B_{down}}{B_{up}} \ge 1.2 \tag{1}$$

$$\frac{N_p^{down}}{N_p^{up}} \ge 1.2 \tag{2}$$

$$\frac{T_p^{down}}{T_p^{up}} \ge \frac{1}{1.2} \tag{3}$$

Additionally, the solar wind speed jump had to fulfil a condition which depends on the shock type:

$$FF FR V_{down} - V_{up} \ge 20 km/s V_{up} - V_{down} \ge 20 km/s (4)$$

The condition differs for FF and FR type shocks due to opposite order of the upstream and downstream regions when the shock passes the observing spacecraft.

Andrew P. Dimmock | IRF Uppsala, Sweden | andrew.dimmock@irfu.se

Method

- Upstream window (3 min) Δt_{up}
- Downstream window Δt_{down} (3min)
- Window separation (2) Δt_{sep}
- Window advancement = ΔT 0.25 Δt_{up}

Andrew P. Dimmock | IRF Uppsala, Sweden | andrew.dimmock@irfu.se

Example

#	Date	Time (UTC)	R [AU]	$ heta_{bn}$ [°]	M_A				
1^a	2020-04-19	05:06:18	0.8	47	NaN				
2^a	2020-08-21	19:17:06	0.9	72	NaN				
3	2020-09-17	11:44:17	1.0	NaN	NaN				
4^a	2020 - 11 - 12	23:26:57	0.9	72	NaN				
5^a	2020-11-14	19:16:14	0.9	80	NaN				
6^a	2020-12-06	15:14:25	0.8	58	NaN				
7^a	2020-12-14	02:49:49	0.8	78	NaN				
8^a	2021-04-15	20:22:46	0.8	12	NaN				
9^a	2021-06-07	20:02:24	1.0	29	NaN	37	2022-06-10	22:55:40	1.0
10	2021-06-13	10:08:41	0.9	74	1.5	38	2022-06-17	00:40:07	1.0
11^a	2021-06-23	22:15:31	0.9	73	NaN	39	2022-06-28	08:09:09	1.0
12^a	2021-06-27	05:54:53	0.9	17	NaN	40	2022-07-03	06:00:04	1.0
13	2021-07-18	17:57:54	0.8	83	2.8	41	2022-07-21	09:29:52	1.0
14	2021-07-19	08:28:02	0.8	67	2.8	42	2022-07-25	06:22:48	1.0
15	2021-07-31	00:39:37	0.8	63	1.7	43	2022-08-01	14:17:52	1.0
16	2021-09-25	18:26:07	0.6	NaN	NaN	44	2022-08-18	02:56:45	0.9
17	2021-10-11	07:32:24	0.7	66	2.6	45^a	2022-08-28	23:51:53	0.8
18	2021 - 10 - 14	23:13:06	0.7	51	1.1	46	2022-08-29	11:06:39	0.8
19	2021-10-30	22:02:09	0.8	44	6.7	47	2022-08-30	13:02:05	0.8
20	2021 - 11 - 03	12:28:04	0.8	34	2.8	48	2022-08-31	21:44:28	0.7
21	2021 - 11 - 03	14:04:26	0.8	37	5.1	49	2022-09-05	00:23:48	0.7
22	2021 - 11 - 16	04:01:35	0.9	66	3.4	50	2022-09-06	10:00:51	0.7
23	2021 - 11 - 27	22:59:45	1.0	72	2.8	51	2022-09-08	04:10:27	0.7
24	2021 - 12 - 27	10:16:33	1.0	79	1.8	52	2022-09-08	21:00:45	0.7
25	2022-01-08	01:51:08	1.0	82	3.8	53	2022-09-13	17:10:35	0.6
26	2022-02-16	21:44:55	0.7	45	1.8	54	2022 - 12 - 07	05:22:07	0.8
27	2022-02-21	14:32:20	0.7	65	2.8	55	2022-12-26	$05{:}21{:}27$	0.9
28	2022-03-08	14:45:59	0.5	58	1.1	56	2023-01-05	09:44:06	1.0
29	2022-03-08	21:32:56	0.5	69	3.7	57	2023-01-13	01:37:54	1.0
30	2022-03-11	19:52:14	0.4	21	3.1	58	2023-01-17	09:56:35	1.0
31	2022-04-03	04:51:33	0.4	47	2.7	59	2023-02-17	14:03:26	0.8
32	2022-04-08	13:48:53	0.4	44	7.6	60	2023-02-19	09:58:49	0.8
33	2022-04-14	08:51:56	0.5	21	0.8	61	2023-02-20	22:48:49	0.8
34	2022-05-08	08:15:14	0.8	49	2.9	62	2023-02-21	03:35:58	0.8
35	2022-05-21	14:51:12	0.9	59	4.1	63	2023-02-21	16:59:14	0.8
36^a	2022-06-08	12:04:27	1.0	42	NaN	64	2023-03-14	01:08:29	0.6

Andrew P. Dimmock | IRF Uppsala, Sweden | andrew.dimmock@irfu.se

Shock list

22	2.6
16	9.6
46	5.3
50	4.2
78	2.6
65	9.7
87	1.4
80	2.5
51	NaN
47	3.7
81	3.2
36	6.0
69	1.8
58	2.7
68	0.9
15	2.5
69	2.0
55	2.1
50	3.2
90	2.4
53	1.2
NaN	NaN
38	2.4
37	4.3
52	1.1
86	2.4
85	12.1
80	4.9

- Refining/testing RPW shock trigger mode.
- Identification of interesting case studies (e.g., ion reflection, waves, quasi-parallel, perihelion).
- Shock (and surrounding regions) statistical studies (see presentation by Jordi).
- Comparison with other shock types (bow shocks, astrophysical shocks)

Applications

7

Andrew P. Dimmock | IRF Uppsala, Sweden | andrew.dimmock@irfu.se

rameter	Value				
ate	2021-10-30				
me of shock ramp (UTC)	22:02:09				
$n^{a} [^{\circ}]$	44				
lfvén Mach number ^{<i>a</i>} M_A	6.7				
st Mode Mach number ^{<i>a</i>} M_f	2.5				
nock normal $\hat{\mathbf{n}}_{mx3}$ (mixed mode 3)	[0.64, -0.04, -0.77]				
lock normal $\hat{\mathbf{n}}_{mc}$ (magnetic coplanarity)	[0.47, -0.56, -0.68]				
nock normal $\hat{\mathbf{n}}_{mva}$ (minimum variance)	[0.80, -0.20, -0.57]				
nock speed ^a [km/s]	348				
olar wind speed V_u [km/s]	321				
agnetic field B_u [nT]	2.7				
agnetic compression ratio (B_u/B_d)	3.6				
n Temperature T _{iu} [eV]	5.0				
ensity (ion, electron) n_u [cm ⁻³]	7.3, 8.9				
ensity compression ratio (n_u/n_d)	3.5				
n plasma β_{iu}	2.3				
pstream window Δ_u	21:58:00 - 22:00:00				
ownstream window Δ_d	22:05:09 - 22:08:06				
ased on mixed mode 3 shock normal $\hat{\mathbf{n}}_{mx3}$.					

^{*b*}Assuming $T_e = 14$ eV.

Interesting EPD observations

- Solar Orbiter shocks can be identified automatically using MAG and SWA-PAS data.
- Currently, we have 64 shocks (until the end of March 2023).
- Contact me if you are interested in using the list.
- We recently studied a high Mach number IP shock and were able to observe ion reflection
- lons are observed several minutes upstream and are predominantly field-aligned.
- Evidence of local shock irregularities may be connected with the features of the backstreaming ions revealed in the ion VDF.

Conclusions

