
ROC Software
System Validation Plan

Sonny LION

Organization overview

Software Testing Levels
• Unitary tests: individual units verification (design level)
• Integration tests: individual units combination verification (interfaces level)
• Validation tests: global functionalities verification (compliance with the RSSS)

Validation steps
• Validation of new functionality in the development environment
• Validation in the test environment

➔ Continuous integration : non-regression and compatibility with interfaces

• Validation in the pre-production environment
➔ compatibility with the production environment

Development Test Pre-production

1. Validation tools

Validation tools

Language Launcher Framework Miscellaneous

Python tox Pytest hypothesis

JavaScript Mocha Chai enzyme

Software validation tools

● Hypothesis: library to parametrize tests and simply generate random data matching given
specifications.

● Enzyme: JavaScript Testing utility for React that makes it easier to assert, manipulate, and
traverse React Components.

System validation tools

● Jenkins: extensible automation / continuous integration server

● Gitlab: web platform used to monitorate versioning, issues and continuous integration

● Locust: python utility to do distributed load testing used to perform stress tests on the
MUSIC Web tools

Gitlab – versioning system

Gitlab server
➔ maintained by the
Direction Informatique de
l'Observatoire (DIO)

Gitlab – issue tracker

Jenkins

Jenkins Server (roc-dev)

● Centralization: common interface for jobs, reports, etc.
● Automation: compilation, testing, deployment, etc.
● Test logs

Jenkins - Metrics

Jenkins - History

Jenkins – Test reports

2. Validation resources and infrastructure

 Validation resources - Inputs

Test inputs

● Representative subset of data produced and processed during RPW ground
calibration campaigns

● Data provided by ESA

● Data generated by the ROC (low-latency testcards)

● RPW Calibration Software (RCS) E2E data packages (teams in charge)

● Random data (hypothesis package)

Validation resources - Test environment

Validation resources - Pre-production environment

Validation resources - LLVM testing environment

3. Continuous integration

Continuous integration cycle

4. Validation Campaign

Validation approach – RODP and ROC-SGSE

Pipeline components validation
● Basic testing: independent of the pipeline architecture

● Task testing: depend on the whole pipeline architecture (between unit and
integration tests)

● Command testing: depend on the whole pipeline architecture (validation tests)

Note : RCS tests are included in the command tests

Robustness testing
● part of each test phase

➔ ensuring that the pipeline responds as expected to erroneous inputs

Task 1

Task 2

Command 1

Performance testing
● Evaluated by measuring the time taken to execute
each command

Validation approach – MUSIC

Backend testing
● Unit testing: views, serializers and models
● Validation tests : calling all API end points, simulate complete user queries, use
erroneous requests and test the permission system

Frontend testing
● Unit/integration tests for components, actions, sagas and reducers

Stress/performance testing
● Generate predefined requests via Locust to simulate the activity of a given number
of users

Robustness testing
● Part of each test phase

➔ ensuring that MUSIC responds as expected to erroneous inputs

Beta testing
● Frontend validation
● Frontend performance
● Ergonomic aspects
● Security aspects

Validation approach – Reports

Test Reports
● Pytest and Mocha publish JUnit XML test reports (collected by Jenkins)

➔ include metrics (test and comment coverage, coding guidelines compliance)

● Locust results are saved in a CSV file.
➔ include statistics on response times and errors

● Beta test reports
➔ series of test cases with evaluation grids and feedback sections (cf. the Beta

Testing Report Template)

All these reports will be compiled in a single document, the ROC Software System
Validation Test Report

Validation campaign overall schedule

Validation approach – Risks

Point of failure Consequences Impact Probability

Network connection
issues

Installation and servers
communication issues

Major Unlikely

Server down Unable to run the
RSS/Jenkins/Gitlab
(depending on
the server)

Major Unlikely

Power failure All the servers are of Major Very unlikely

Staf absence The validation tasks will
be done by another
operator

Minor Possible

Computer breakdown The validation campaign
will be done using
another
computer

Minor Unlikely

Database
corruption/error

Integration and
acceptance tests can
not be performed

Major Very unlikely

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23

