

Investigating radio-wave propagation in the heliosphere using multi-spacecraft observations of type III radio bursts with Solar Orbiter, Parker Solar Probe, STEREO, Wind and Mars Express

Sophie Musset

European Space Agency Research Fellow

L. Siebenaler, O. Witasse, B. Sanchez-Cano, S. Joyce, E. Kontar, A. Vecchio, X. Bonnin, V. Krupar, M. Maksimovic, P. Zhang, B. Cecconi, N. Chrysaphi,, A. Zaslavsky, K. Issautier, S. D. Bale, M. Pulupa

RPW consortium meeting – 2 October 2023

Observations of type III radio bursts

🙂 🚔 🍁 🛛 🕈 THE EUROPEAN SPACE AGENCY

Directivity of radio emission

Observational properties of type III radio bursts

Observational properties of type III radio bursts:

- Decay time
- Source position
- Source size
- Directivity profile

→ Intrinsic properties of the radio source?→ Constrain properties of energetic electron beam?

Radio-wave propagation effects in the heliosphere:

- Free-free absorption
- Large scale refraction (gradual variation of plasma density)
- Scattering on small scale, turbulent density fluctuations

Anisotropic scattering

Need more scattering to explain observed source sizes Than to explain decay times

Anisotropic scattering: More efficient in the ⊥direction than in the ∥ direction

30

Simulation settings

Most of the scattering happens

near the radio source

- Point source emitting radio-waves instantaneously
- Two parameters to describe scattering:
 - Level of density fluctuations

 $\epsilon = \frac{\langle n_e^2 \rangle}{n_e^2}$

 \circ $% \left(Anisotropy of density fluctuations \right)$

 $lpha = rac{h_{\perp}}{h_{\parallel}}$ Ratio of correlation lengths

ths

How do simulation parameters affect the observed properties of type III radio bursts?

Simulation vs. Observations

Simulation

Two parameters to describe scattering:

 $\epsilon = \frac{\langle n_e^2 \rangle}{n_e^2}$ Level of density fluctuations Ο

Anisotropy of density fluctuations $\alpha = \frac{h_{\perp}}{h_{\parallel}}$ Ο

Observations

Multi-spacecraft analysis of radio burst:

Directivity profile Δμ Ο

Decay time (time profile) 0

τ

Simulations: directivity

0.0

0.2

$$F(\mu) = C_0 \exp\left(-\frac{(1-\mu)}{\Delta\mu}\right)$$

 $\mu = \cos(\theta)$

Cosine of longitude

Evolution of directivity $(\Delta \mu)$ with anisotropy

Anisotropy factor α

0.6

0.8

0.4

1.0

Simulations: decay times

Decay time (τ) of radio emission As a function of the level and anisotropy of the fluctuations

10

💳 📰 📰 💳 🛶 💵 🔚 🔚 📰 📲 🔚 🔤 🛶 🚳 🖿 📲 🛨 📰 📾 🕮 🛶 👘

Echo in time profiles

Simulations: exploring the parameter space

Multi-spacecraft analysis of radio bursts

First multi-spacecraft study of single solar radio bursts

Musset et al, 2021

eesa

| 📱 🔚 🔜 📲 🔚 🔤 📭 🚳 🛌 📲 💥 📲 🛨 🔤 📾 🛤 🏘 🔶 → The European space agency

Multi-spacecraft study of radio bursts

Observations and simulations

→ THE EUROPEAN SPACE AGENCY

Fundamental vs harmonic emission

Master thesis of Louis Siebenaler

16

Intensity of radio bursts – first statistics

Preliminary results

Selection of 25 bursts with well-separated spacecraft to derive radio emission directivity

For each burst:

Directivity profile

→ Intrinsic intensity of radio bursts (e.g. peak of the profile)

Master thesis of Louis Siebenaler

Mars Express / MARSIS radio bursts observations

Master thesis of Louis Siebenaler

Mars Express, launched in 2003 MARSIS instrument (radar): 100 kHz – 5.5 MHz

In some operation modes, MARSIS detects solar radio bursts

→ Additional point for directivity profiles!

MARSIS calibration: event selection

Sun, STEREO-A and Mars aligned

Sun, Earth and Mars aligned

MARSIS calibration: conversion factor

Mars Express / MARSIS radio bursts observations

Conclusions

- Multi-spacecraft measurements allow to quantify the directivity profile of **single** radio bursts for the first time
- Planetary missions can be used to add data points in the heliosphere! We demonstrated the use of MARSIS
 on Mars Express: this could be done also with Juno, Juice...
- Comparing radio burst observations to ray-tracing simulations, we can determine the level and anisotropy of density fluctuations around the source, and how it varies from event to event
- Ray-tracing simulations must explain all observational signatures: decay time, directivity profile, source
 position and size.
 - → In this work we looked at directivity and decay time together
 - → Imaging at these frequencies would be amazing: interferometry in space!
 - → On the simulation side, need to address the hypothesis of point source instantaneous radio emission
- Next step: compare our findings on plasma density fluctuations to in-situ measurements near the Sun (Parker Solar Probe) to further validate our approach
- Multi-spacecraft observations of radio bursts could be a way to characterize the plasma at distances below what can be reached by Parker Solar Probe

Additional slides

💳 🔜 📲 🚍 💳 🕂 📲 🧮 📰 📲 🔚 📲 🔚 🔤 🛻 🚳 🍉 📲 🚼 🖬 📾 📾 🗠 🍁 🔸 The European Space Agency