

Density turbulence from the Sun to 1 au solar radio burst diagnostics

E. P. Kontar, G. Emslie, D. Clarkson, N. Chrysaphi, X. Chen, N. Jeffrey, F. Azzollini, M.Gordovsky

School of Physics and Astronomy University of Glasgow, UK

https://arxiv.org/abs/2308.05839

RPW meeting

Prague, Oct 2-4, 2023

Turbulence in the solar corona & solar wind

Fluctuations in magnetic field, velocity, density, ...

How do density fluctuations change from the Sun to au?

Density turbulence model should be equally evident in

- Solar radio burst observations
- Broadening/scintillations of (extra-solar) point radio sources via solar atmosphere
- In-situ density turbulence measurements

However

• In-situ density turbulence

measurements are patchy and far away from the Sun; also in frequency

- Broadening/scintillations cannot go too close to the Sun
- Solar radio burst observations (type III bursts) are <u>from low corona to</u> 1AU

Radio wave propagation affects:

- The position of the source (frequency dependent)
- The size of the sources
- Shape of the sources
- Directivity of radio emission
- Time-profiles of the bursts (decay is normally longer)
- Polarization of the bursts

Narrow-band emission (~0.1 MHz) corresponds to small (~0.1 arcmin) intrinsic sizes observed as 20 arcmin sources with LOFAR Kontar et

al,, 2017 Arcmin variations at 50ms scales!

 Long decay time of type III bursts is consistent with radiowave scattering Krupar et al 2018, 2020

1200

1220

UT (20101113)

1140

We simulate for radio sources and use measurements:

- The size of the sources

- Time-profiles of the bursts (decay is normally longer)
- The position of the source (frequency dependent)

Anisotropic turbulence

Type III solar burst source size

Simulations

Comparison to observations

Type III 1/e decay times

Fundamental => Alpha = 0.25 seems a better value over wide range of frequencies

Harmonic => Alpha = 0.42 seems a better value over wide range of frequencies

Type III source locations

Point source broadening

Results 1

Density turbulence model $\overline{q \epsilon^2} R_{\odot} = 2 \times 10^3 \alpha \left(1 - \frac{R_{\odot}}{r}\right)^{2.7} \left(\frac{R_{\odot}}{r}\right)^{0.7}$ and $q_{\parallel}/q_{\perp} = 0.25 - 0.4$

appear consistent with

- Solar radio burst observations (size, decay, and position)
- Observations of point radio sources (FWHM) via solar atmosphere
- In-situ density turbulence measurements P(f) in terms of alpha and qeps2

Spectrum-weighted wavenumber

Broad peak between 2-10 solar radii

Symmetry (r/r_sun-1) (although might be not precise) is better than r- dependency (probably related to magnetic flux rooting into photosphere

Taking into account the inner scale

The inner scales deduced from magnetic fluctuations, supporting a close relation between magnetic fluctuations and density fluctuations.

Inner scale is consistent with the scale of the resonant condition for protons $(v_{Ti} + v_A)/\omega_{ci}$

Power-law amplitude

Density fluctuation amplitude at inner scale

Summary I

- Simple empirical model consistent with "all" data requires modest anisotropy 0.25-0.4
- Density turbulence predicts P(f) at 1au in agreement with observations
- Amplitude of turbulence changes at supersonic point 5-8 solar radii, not near superalfvenic
- Fundamental/harmonic positions and sizes are virtually the same
- Decay time depends strongly on anisotropy (stronger anisotropy if sources are fundamental)

$$P(f) = \frac{n^2}{(2\pi)^3} \int S(\mathbf{q}) \,\delta\left(\frac{\mathbf{q} \cdot \mathbf{V}_{\rm SW}}{2\pi} - f\right) \,d^3q \ .$$

Summary II

- Type III burst source sizes are predominantly determined by radio-wave scattering over the entire range of frequencies and follow a 1/f trend
- Source positions observed at the fundamental and the harmonic are virtually co-spatial
- Scattering serves to provide a fundamental lower limit on the observed decay time of radio bursts emitted via plasma emission.
- Below ~1 MHz the average decay time of type III bursts is due to scattering
- Need data in 3-15 MHz void possibly SunRISE

Bonus slides:

How does magnetic field affect radio wave propagation?

Animation 1 MHz source - different angles

Radio waves are strongly scattered in the solar corona...

From Hewish 1958 http://articles.adsabs.harvard.edu/pdf/1958MNRAS.118..534H

In-situ density fluctuations

Spectrum of density fluctuations at 1AU Let $S(\mathbf{q}) = S((q_{\perp}^2 + \alpha^{-2}q_{//}^2)^{1/2})$, from Chen et al 2012

$$P(f) = \frac{n^2}{(2\pi)^3} \int S(\mathbf{q}) \,\delta\left(\frac{\mathbf{q} \cdot \mathbf{V}_{\rm SW}}{2\pi} - f\right) \,d^3q \ .$$