Poster 137

Belfast, 12-15 September 2022

Merging of MAG and RPW/SCM magnetic waveforms on Solar Orbiter: preliminary results

O. Alexandrova, M. Kretzschmar, M. Maksimovic, J. Soucek, T. Chust, Y. Khotyaintsev, X. Bonnin, S. Lion, P. Louarn, B. Lavraud, T. Horbury, L. Matteini MAG & SCM 2022-04-03 discontinuity at ~4:50 UT (V~550 =>700 km/s)

Strong signal is detected on SCM.

SCM snapshots: 8 s : 256 Hz

0.5 s : 4096 Hz 0.083 s: 24576 Hz (2048 data points)

LPC2E

00:01:49

00:01:49

00:01:49

4.5

10.56

10 7

=> Discontinuity at ~04:50 UT is a boundary of different solar wind flows

The most intense snapshot at 4:51:53 UT within the strong gradient of |B| and |V| V ~ 550 => 700km/s

8 s : 256 Hz 0.5 s : 4096 Hz 0.083 s: 24576 Hz

MAG & SCM comparison

Comparison MAG/SCM

(a) ZOOM on B_T component.

(b) SCM (black lines) & Band-pass-filtered MAG @[1,10] Hz (in red)

Nice correspondence within the frequency range of the overlap, i.e., 1-10 Hz.

Is there a time delay between MAG and SCM?

Let's take 5 Hz as the frequency ⁻ of merging (see -RPW meeting on 17/06/22) ⁻

Merging procedure using Haar Wavelets (Andre's method), see appendix of [Alexandrova, Mangeney et al. 2004, JGR]

- Let's consider B_j (j=x,y,z) magnetic field component on MAG, B_{j_mag}, and its corresponding time, t_{mag}, during the SCM chosen snapshot of 8 seconds (256 vectors/sec data), B_{j_scm}, t_{scm}. (We omit 'j' below).
- We interpolate B_{mag} data on t_{scm} time grid with dt=1/256 time resolution.
- We perform Haar WT of interpolated B_{mag} and of $B_{scm} =>$ we get two sets of wavelet coefficients $W_{mag} \& W_{scm}$, which depend on time t and time scale τ . We combine these coefficients in the following way, where m is the scale index and m_0 corresponds to the merging time scale of 0.2 sec (5 Hz). The inverse WT gives B_{mix} .

$$W_{\rm mix}(m,t) = a_m W_{\rm scm}(m,t) + b_m W_{\rm mag}(m,t)$$

$$a_m = \begin{cases} 1, & \text{for } m < m_0\\ 2^{-2(m-m_0+1)}, & \text{for } m \ge m_0\\ b_m = 1 - a_m \end{cases}$$

$$\tau_m = 2^m dt_{\rm scm}$$

$$\tau_0 = 0.2 \ {\rm s}$$

 B_T component

Merging in wavelet's space

(Cluster heritage) f₀=5 Hz

NB: PSDs of B_{mix} data contain high frequency noise due to non-periodicity of the signal (there is a strong discontinuity at the boundary).

Merging in time space

(MMS heritage) $f_0=5$ Hz

ZOOM on B_T

Merging in time space

(MMS heritage) $f_0=5 Hz$

Discussion

- We attempt to merge low frequency MAG data with high frequency SCM data.
- RPW/LFR/SCM snapshots are complex data: every 5/10 min we have 3 snapshots of different length T and sampling frequency f_s but with the same number of data point in each, N=2048 :

(1) T=8 s, f_s =256 Hz (2) T=0.5 s, f_s =4096 Hz (3) T=0.083 s, f_s =24576 Hz

- Merging of B_{mag} with B_{scm(1)} is done around f₀=5 Hz using Haar WT and in time space using classical sin(x)/x filter.
- Next steps:
 - time delay between MAG and SCM ?
 - sort out the edge effects (mirror-reverse the same time interval, ...?)
 - continue the procedure for high-frequency data: merge B_{mix} with B_{scm(2)} and then this new product merge with B_{scm(3)}
 - test the procedure with different energy level SCM data
 - test different f₀ for each level of merging (MAG + 3 SCM snapshots)
 - choose the best approach: WT space vs time space merging
 - apply to all data ? or produce merged data on demand ?

Comparison MAG/SCM in RTN for the snapshot at 4:51:53 UT

SCM (black lines) & Band-pass-filtered MAG @[1,10] Hz (in red)

Corresponding PSDs

Examples of snapshots in maxima of |B_{MAG}|

SCM snapshots within the discontinuity ramp (one of the strongest signal) t_{start} =4.86484 dec.h = **4:51:53.424 UT**

SCM snapshots: 8 s : 256 Hz 0.5 s : 4096 Hz 0.083 s: 24576 Hz (2048 data points per snapshot)

SCM snapshots within a max of |B| t_{start}=5.53151 dec.h = **5:31:53.436 UT**

SCM snapshots within another max of |B|, t_{start} = 6.6148 dec.h = **6:36:53.433 UT**

