

BIAS Team Solar Orbiter / RPW

Erik P G Johansson, IRF, Sweden

RPW Consortium Meeting #20, Paris Observatory, 2017-11-29

ROC/BIAS Management

- Andris Vaivads (IRF) Lead Co-I (overall responsibility)
- Erik Johansson (IRF) Lead software engineer
- Yuri Khotyaintsev (IRF) Lead archiving scientist

SUPPORT:

- Daniel Graham (IRF) Consultant, AC calibration
- Anders Eriksson (IRF) Consultant, DC calibration
- Thomas Nilsson (IRF) SPIS simulations
- Thomas Karlsson (KTH) KTH coordination

 Footnote: Lennart Åhlén (IRF) – Hardware engineer (BIAS design, testing) – Retired in ~April 2017

- Software version control (internal): git
- Implementation:
 - MATLAB 2016a (+ NASA CDF patch)
 - Internally uses official datasets (CDFs) plus "internal datasets", all related through a web of modular one-way dependencies. Output datasets are derived recursively, indirectly from the input datasets.
 Design should make the dataset processing flexible w.r.t. e.g. multiple dataset versions and changing dataset relationships.
- Intended to be extended to be used on both pipelines: ROC-SGSE (ground calibration ; current design), and RODP (mission)

- There is a submitted RCS User Manual (RUM) draft
- There is no Software Requirements Specification (SRS)
- ~ICD compliant (not latest ICD; if ignoring CDF contents).
- Does read, process, and produce subset of datasets. Supported output CDFs "decent".
 - Handles LFR WF datasets; incomplete implementation for TDS-LFM WF.
 - Simplistic calibration: multiplication (no transfer functions, no offsets)
 - Processes dataset levels according to old scheme L2R \rightarrow L2S (not L1R \rightarrow L2S)
 - No sweeps and bias currents (awaiting design decisions with ROC; only RODP pipeline anyway)
- No official BIAS calibration table skeleton yet: non-trivial
- (+Partial internal tool for exploring/working with BIAS standalone calibration data.)

BIAS Datasets

- BICAS input datasets:
 - Can read All LFR, V01/V02
 - ROC-SGSE_L2R_RPW-LFR-SBM1-CWF
 - ROC-SGSE_L2R_RPW-LFR-SBM2-CWF
 - ROC-SGSE_L2R_RPW-LFR-SURV-CWF
 - ROC-SGSE_L2R_RPW-LFR-SURV-SWF
 - ROC-SGSE_HK_RPW-BIA
 - Can read (processing incomplete)
 - ROC-SGSE_L2R_RPW-TDS-LFM-RSWF
 - ROC-SGSE_L2R_RPW-TDS-LFM-CWF
 - Will also eventually need to read more datasets (RODP pipeline). Awaiting design decisions.
 - SOLO_L1_RPW-BIA-SWEEP (Sweeps)
 - Bias currents

- BICAS output datasets:
 - Can output; skeletons are well defined (V02)
 - ROC-SGSE_L2S_RPW-LFR-SBM1-CWF-E
 - ROC-SGSE_L2S_RPW-LFR-SBM2-CWF-E
 - ROC-SGSE_L2S_RPW-LFR-SURV-CWF-E
 - ROC-SGSE_L2S_RPW-LFR-SURV-SWF-E
 - Partially implemented; Skeletons are well defined
 - ROC-SGSE_L2S_RPW-TDS-LFM-RSWF-E
 - ROC-SGSE_L2S_RPW-TDS-LFM-CWF-E
 - Will also eventually need to read more datasets (RODP pipeline). Awaiting design decisions.
 - Sweeps
- (Preliminary L3 datasets (no L4); no impl.)
 - E x B drift
 - True satellite potential
 - 3D electric field (E dot B = 0)

There has been some confusion and misunderstanding on:

- which of two BIAS standalone calibration data (which test) to actually use
- which h/w was actually used for the same two BIAS standalone calibrations

This should now be resolved.

Conclusions: There are **two** relevant BIAS standalone calibration tests, but **none** with only flight-h/w:

- Test performed 2016-06-21 to 22
 - Hardware:
 - Non-flight BIAS board (FS0)
 - Flight harness
 - Flight preamps
 - One ("MEB") temperature
 - Already archived at ROC?
 - Should be used for: Transfer functions (frequency response), absolute DC offset (+gain). /L.Åhlén

Flight = Physical h/w that is planned to actually fly; not just identical design.

- Test performed 2016-07-23 to 24
 - Hardware:
 - Flight BIAS board (PFM)
 - IRFU's "flight-like" harness
 - IRFU's "flight-like" preamps
 - Multiple ("MEB") temperatures
 - Should also be archived at ROC?
 - Should be used for: DC offset (+gain) *temperature dependence* (not absolute values) /L.Åhlén

Some BIAS questions (mostly for XB)

- BIAS calibration tables
 - Difference ROC-SGSE & RODP calibration tables? Not the same?
 - ~Convention for how to encode transfer functions (frequency response) in official calibration tables?
 - No complex numbers in CDFs? Real+imaginary part (TDS)? Abs.value+phase? (dB+phase ?!!)
 - Interpolate transfer functions for arbitrary resistance? How?
 - ~DECIDED: Calibration table contains time series of calibration data (timestamped). Handles changes in resistance/stimuli & temperature, results of in-flight internal calibrations(?)
 - ~DECIDED: Store transfer functions as fits/coefficients.
 - ~DECIDED: Somehow interpolate to produce calibration data for current resistance/stimuli (in calibration table?)
 - Note: For every point in time there is at least: 3 DC single offsets + 3 DC diff offsets + 4 transfer functions (+3 PA/bias offset+gain?)
 - Note: Transfer functions need to be read by others: LFR (more?)
- ~Plan for the "odd" BIAS RCS input data?
 - RCS input for sweep data, incl. sweep bias currents.
 - RCS input for fix-bias current data to combine with WF data (*not* sweeps)
 - Difference ROC-SGSE and RODP pipelines for above data?

Some BIAS questions (mostly for XB)

- Add gattrs. "CALIBRATION_TABLE", "CALIBRATION_VERSION" to BIAS L2 datasets too?
- (XB should be waiting for BIAS L2 dataset quicklooks (ROCDATPRO-31).)