

LFR status elements

- Snapshot synchronization anomaly (*in principle* solved)
- LFR spare model (manufacturing is ongoing)
- Background noise levels from the RPW thermal calibrations (SWF spectra [noisy] + ASM spectra [less sensitive])

Thomas Chust and the LFR team

Anomaly observed during calibration sweeps (1)

Anomaly observed during calibration sweeps (2)

4th SWF_F2 of the third block:

Snapshot synchronization anomaly (historical 1)

- First observed during calibration tests by Emmanuel G. on the waveforms (long time ago, seldom but regularly...)
- Confirmed and detected from the TF curve anomaly
- Daniel D. did deep investigation on the GSE arbitrary wave generator (implemented a pulse at the beginning of each 22s sinus of the original "multisin_block");
 redo another investigation later with Alexis J. : NOTHING

- Alexis did also a deep investigation on LFR EQM (with signals allowing to *count* each second) but also NOTHING
- Simone T. replays many times calibration sweeps in order to have statistics: the anomaly may occur in all of the 3 multisin blocks but always *exactly* in the same way : at the 4th SWF_F2 of the considered block and with the same time shift
- Alexis computed another "multisin_block" file in order to discriminate each sec.
- Simone replays many times again the calibration sweep with this file.

Alexis' 22s pattern file (one second correspond to one level & one frequency):

Anomaly observed with the new "sweep" file

LFR F2, F1, F0 snapshots (SWF) and TDS snapshots (RSWF)

Snapshot synchronization anomaly (historical 2)

- From Simone's measurements :
 - the LFR anomaly is present only on the F2 snapshot (F1 and F0 nominal)
 - the anomaly should stem from FSW and not from VHDL
 - the desynchronization occurs always on the same snapshot after start of the NORMAL mode, on the 4th SWF_F2
 - it happens always in the same way: exactly 10.5 s delay
- From Simone's last measurements with TDS on:
 - TDS "see" the same things as LFR for F0 and F1 (except for the differences of gain, frequency bandwidth and phase)
- Alexis redid the tests he did before but with an *exact* 1Hz clock and found also plenty of synchronizations with the LFR EQM :
 - as for Simone's tests, the anomalies have the same synchronization delay of 10.5 s,
 - and occur always on the same SWF_F2 after start of the NORMAL mode (for a given periodicity of the snapshots, tests having been done with different values, greater than 22s)

Alexis' desynchronization observations (1)

Results with snapshot period = 29 (20 iterations)

Alexis' desynchronization observations (2)

Results with snapshot period = 22 (49 iterations)

Results with snapshot period = 26 (20 iterations)

Results with snapshot period = 25 (20 iterations)

Results with snapshot period = 27 (20 iterations)

Snapshot synchronization anomaly (conclusion)

- 2688 / 256Hz = 10.5 s !
- 2688 is the size of the ring buffer used (and also of the snapshot) ...
- the anomaly occurs when the snapshot coincides with a buffer : the correct time is recorded but the data of the next buffer is taken!

```
883
          if ( (nbSamplesPart1_asLong >= NB_SAMPLES_PER_SNAPSHOT) | (nbSamplesPart1_asLong < 0) )
885
          {
886
              nbSamplesPart1_asLong = 0;
         }
         // copy the part 1 of the snapshot in the extracted buffer
889
          for ( i = 0; i < (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i++ )</pre>
          {
891
              swf_extracted[i] =
892
                      ((int*) ring_node_to_send->buffer_address)[ i + (sampleOffset_asLong * NB_WORDS_SWF_BLK) ];
893
         }
894
         // copy the part 2 of the snapshot in the extracted buffer
         ring_node_to_send = ring_node_to_send->next;
          for ( i = (nbSamplesPart1_asLong * NB_WORDS_SWF_BLK); i < (NB_SAMPLES_PER_SNAPSHOT * NB_WORDS_SWF_BLK); i++ )</pre>
897
          {
              swf_extracted[i] =
                      ((int*) ring_node_to_send->buffer_address)[ (i-(nbSamplesPart1_asLong * NB_WORDS_SWF_BLK)) ];
          }
```


- Manufacturing of the LFR spare model was pending up to now ...
- Noise anomaly from LFR ADCs/clock signal observed below -20° has been considered acceptable since the MEB working temperature range will be well above (decision from last team meeting, Nov. 2017, Paris)
- Boot anomaly of LFR (within MEB) when reaching temperatures higher than 50° has been solved: it was caused by a too short timing of the DPU booting sequence ...
- LFR synchronization anomaly is not linked to hardware but to the FSW
- LFR PFM1 board activities have thus restarted !
- The FPGA has been successfully programmed by HIREX (week 22)
- Things are ongoing ...
- Optimally, DRB with LESIA in Sept. 2018, with LFR PFM1 board acceptance

SWF & ASM output noise spectra with SCM-PFM

MEB +20 $^{\circ}$

SWF output noise spectra with SCM-EM

MEB [-20°, +50°]

(already shown during the Stockholm's RPW team meeting, June 2017)

 $(\Delta f = 8.00 \text{ Hz})$

1500

1500

1500

1500

1500

1500

SCM-EM

'ім

B1B1*

2000

2000

2000

2000

2000

2000

••• VV*

E2E2*

E1E1*

B3B3*

B2B2*

*

Additional slides

RPW Instrument Overview

Will allow the characterization of the electric and magnetic fields associated to the dynamics of the near-Sun heliosphere **from near DC up to 20 MHz**

LFR 11 analogue inputs

LFR Decimation and Processing Strategy

BIAS 5 analog inputs and the R-parameters

BIAS configuration

BIAS_WORKS								
BIAS_1	BIAS_2	BIAS_3	BIAS_4	BIAS_5				
V1_DC	V12_DC	V23_DC	V12_AC	V23_AC	standard	SCM_1	SCM_2	SCM_3
V2_DC	V3_DC	V23_DC	V12_AC	V23_AC	probe 1 fails	SCM_1	SCM_2	SCM_3
V1_DC	V3_DC	V13_DC	V13_AC	V23_AC	probe 2 fails	SCM_1	SCM_2	SCM_3
V1_DC	V2_DC	V12_DC	V12_AC	V23_AC	probe 3 fails	SCM_1	SCM_2	SCM_3
V1_DC	V2_DC	V3_DC	V12_AC	V23_AC	offsets	SCM_1	SCM_2	SCM_3
					saturate V12			
BIAS_FAILS								
VHF_1	VHF_2	VHF_3	GND	GND		SCM_1	SCM_2	SCM_3
\downarrow	↓	\downarrow	\downarrow	\downarrow		↓	↓	\downarrow
ADC_E1	ADC_E2	ADC_E3	ADC_E4	ADC_E5		ADC_B1	ADC_B2	ADC_B3

Current set of Basic Parameters

LFR Spectral Frequencies

- (1) Depending on the frequency channel, **selection** of 96, 104 or 88 consecutive **frequency bins** among 128 (N_{FFT} = 256) of the *time* averaged spectral matrices.
- (2) Then, the ASMs are averaged over packets of N_{freq} (8 or 4) consecutive bins :

LFR Normal Mode (1)

LFR Normal Mode (2)

LFR Selected Burst Mode 1

BP:	12672 bps
WF:	393216 bps
ASM:	0 bps
TM:	405888 bps

sampling frequency

LFR Selected Burst Mode 2

BP:	5760 bps
WF:	24576 bps
ASM:	0 bps
TM:	30336 bps

sampling frequency

LFR block diagram

