
The Monitoring and Control Subsystem User Interfaces
(MUsIC)

Sonny LION

Introduction

MUsIC is a collection of Graphical User Interfaces (GUIs) dedicated to the
preparation of the instrument operations and to the analysis of the instrument data

TV

The RPW TM/TC Viewer , the main GUI to promptly monitor the instrument status,
TM/TC history and statistics and HK/science data.

TV - instrument status

TV - statistics

TV - statistics

TV - HK/science data

TV - HK/science data

Figaro

The RPW Flight Operation Procedure Editor, a Web GUI to edit and save the RPW
flight procedures (RFP). The RFP will serve as a primary library to generate the RPW
operation requests (IOR, MDOR, PDOR).

Faust

The RPW Flight Operation Request Editor, the ROC GUI to prepare and submit the
instrument commanding sequences, in accordance with the mission planning
constraints and interface specification.

Main page

The ROR library (a table) contains the following ROR meta-data:

● name of the ROR;
● type of the ROR (MDOR, PDOR or IOR);
● (...)

Editing window (timeline or table mode)

The user can drag and drop sequences and group of sequences from the sidebar to
the table

Similarly, he can rearrange the sequences in the table

By clicking on a sequence, he can edit the formal parameters and adjust the starting
time

Opera

The RPW Operation Planning Interface, a Web GUI to visualize and plan the
instrument operations timeline.

SISSI

The SBM Interactive Selection System Interface, a Web GUI that allows ROC team to
manage and select the SBM event data to downlink. The architecture of these GUIs
includes interfaces with the RODP and MDB to retrieve/store related data and meta-
data.

Software architecture overview

MUsIC is divided into two parts connected by an API:

➔ the frontend (a web page)
➔ the backend (a Django server)

API calls are only needed when user actions require or affect the database.

The backend is self consistent and can be used to interact with the database with any
software able to send and receive HTTP requests/responses.

Backend – REST API

A REST API defines a set of functions which developers can perform requests and
receive responses via HTTP protocol such as GET and POST.

• GET - /api/figaro/procedures - display all procedures
• POST - /api/figaro/procedures - create a new procedure
• GET - /api/figaro/procedures/{id} - display a procedure by ID
• PUT - /api/figaro/procedures/{id} - update a procedure by ID
• DELETE - /api/figaro/procedures/{id} – delete a procedure by ID

Backend – MUsIC API

Backend – architecture

● Models map the database entries and facilitate entries
manipulation and mutation (migrations)

● Database entries are formatted by the serializer to be used
by the client

● The API act as a security layer limiting interactions between
the users and the database

Backend – Authentication system

Built-in system

The authentication system is based on a login / password pair
➔ only the hash of the password is saved in the database

Once authenticated, the user receives a token that will be used in all his future
requests and those until his disconnection.

Tokens are used to determine permission levels.

If a token reaches mid-life or if a new session is open, the token is automatically
renewed

MUsICUser Database

Proxy

Backend – Authentication system

LDAP accounts

A user can chose to log in with a LDAP account. The validation is then delegated to
the LDAP server which returns a (LDAP) token to certify the user authentication.
Then, as in the built-in system, the application generates a (MUsIC) token that will
be used to to authenticate future requests.

LDAP server

MUsICUser Database

Proxy

Backend – Authentication system

Permissions

The permissions system is divided
between:

- The user permissions system, a
suite of binary flags designating
whether a user may perform a
certain task.

- The group permissions system, a
generic way of applying labels and
permissions to more than one user.
The labels are defined in the RSSS

When a user is in multiple user
groups, the higher permission level
becomes the effective level

Backend – Admin panel

Environment

The backend has been successfully tested on Linux/Mac/Windows but will ultimately
run on a Debian server.

Web technologies allow to build cross-platform application with a single dependency:
a web browser.

MusIC is developed to run on Firefox and Chrome but should be able to run on any
recent browser.

Server (Debian)

Client 2 (Firefox/Mac)

Client 4 (Chrome/Linux)

Client 1 (Firefox/Linux)

Client 3 (Chrome/Windows)

Frontend – React

React is an open source, component based JavaScript library for building user
interfaces.

A component defines a unit part of the application

Each component can be composed of other components

These components are:

● Reusable

● Testable

Frontend – Redux with synchronous data flow

Action

{
 type : 'LABEL' ,
 data : [...]
}

Redux is a way to organize data. Redux has strict guidelines of how data can
move or flow through a project, which is known as unidirectional data flow

State
{
 var1 : 'var1' ,
 var2 : […],
 var3 : true,
 ...
}

Frontend – Redux with asynchronous data flow

GUI design – Home page

GUI design – Login page

GUI design – TM/TC log

GUI design – Packet detail

GUI design – Filtering

GUI design – Figaro (main page)

GUI design – Figaro (editing window)

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31

