ROC

Ref. SOLO-GS-RP-2460-CNES

Version: 1.0
MUSIC SOftware Date: 26/04/2019
L] L] Page: 1/52
Quality Analysis report | ™
ROC MUSsIC Software Quality Analysis report

Date: 26/04/2019 Issue: 1.0
Reference: SOLO-GS-RP-2460-CNES
Custodian: Dominique Bagot (PAQA CNES)

Dominique Bagot Software Quality Engineer
- Contributers

Desi Raulin

Ground Segment
Development Manager

_

1.0 26/04/2019

all First version

Report delivered to
Lesia laboratory

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/0/2019
Quality Analysis report | " ¥

1. Table of contents

2. PUIPOSE ANA SCOPE...uerurirerrerrrrrerieseritestesesstestessessesseessessassesssessassassesssessassessesssessassesssessessassesssessassasses 4
2.1 PUTPOSE ittt ettt st e s at e s s bat e s aa e e s et e s s aat e s s saaeseens 4
2.2 SCOPE Of the ANALYSIS ..ecverieiirieriiieriereeteesese et etese st et e ste st st esaesse s e st essassasssessessassssssessansanns 5
2.3 APPLicable OCUIMENTESveicuiiieicieiieecieeceece ettt sae e sae s saessaessaessaessae s eessessaessaesssasssasnnas 6
2.4 Reference dOCUIMEITScccvieiieeeieeeieeeieeccteeeeeeeeee e e eesreeesteeessaeessaeeeseeessasessasessssssssesensesensens 6

GENETAL LINKS ...ttt sttt s et te s st et e s e sse st e sbessesatsstessessasatensassessenn 6
PIOJECL ettt ettt ettt et e at bt e bt e bt e s st e st e bt e st e s st e st e st e st e st e st e st e e st e st e st e st ensaens 6
3. Information on the project and product analysed........ccccoceevuerierererrienenienieenieneneeeeseseseeseeseeseeens 7
3.1.1 Context of the analysis: periodic software quality analysisc.ccecceeerverrerrvesesressveseenennens 7
3.1.2 Development team and Stakeholders..........ccueeieeieeiieiecienieeieeieeteseee et ee e e ee s aesaaens 7
3.1.3 ROC sOftware Products OVETVIEWcccecvveeeeeeeeienreeseesreeseesssesssesssessessesssssssesssessassssessaens 7
3.1.4 The MCS User Interfaces (IMUSIC)ccoveeerveeeireeereeeneeenveeesreeesreeesseeessseesssessssesessssessasensns 10

4. 1t00lS and SOUTCE COAE IMPULS....cueereerieierierertertesteeeetestese st e stesteste st etessessesseessassassesssessassesssessassassens 11
4.1 EDIVITOIIIIEIIT «..veeeeeiiieeeeiieeceeieeeceeteeeeeetteeeeeaeeeeeesbaeeeessaeeeessseeessssseeesssssesessssessssssesssssseesessneesns 11
4.2 COdE ANALYSEA ...cuveveeeiereeieeeetesteee et eteste st et ste e s e et e ste s e et et e stasaesse et e basaesse et e aasseeseensansansans 11
4.3 COde tOP-1EVEL SITUCTUTE......cccuveerieerieeieeieeteeteeteeteste s testesaessesseeeesseesessaesssesssasssasssessssanees 12
4.4 Product SiZe and CAtEZOTYccveeieeieerieeieeieeieeteeteetestestesaessessessesssesssesssesssasssesssssssesssessees 17

5. Software engineering COMPHATICEcccveeuiiciriirierceecece et ste e steesaeesaeesae e aessaessaesssessaaeneas 18
5.1 Configuration management (GitLab)......ccccccevrererrniiinenereteercterteeseeseete et seeees 18
5.2 Product dOCUMENTATIONccueeeieeeieeeiieeieeeteeeteecieeeteeeteecteeeteeeteeeteeeteesseeeseesesseesasssassesnssensennses 18
5.3 (€253 415 21 (o) o NP TSR STN 19

6. Maintainability c..ccceeeieeiicicciecteetee ettt ettt e st e et e s e e s e e e e s e e e e e et e e ae e aeeaeesaeenaeesaeeneas 20
6.1 DEPENAEIICIES.ueeveerieerieeriecieeteeteetestestesteeaesaestessseessasssasssasssasssasssasssesssesssasssesssesssessennees 21
6.2 DESIZN ANALYSIS c..veveeverririecteeieeiesieseee et esteste et estestesse e s estessaeseessessassesssessassesseessassassesssessassassens 22
6.3 DUPIICATIONS ..c.veeueereerereeetestesteetestesteeseestessassesseessessasseessassassesseessessassesssessessessesssessassesseessessassens 22
6.4 SizeS aNd COMPIEXITIES ..eeverrreeveeeeiiiertiseeeetestese st et esteste et estessessesseessessassesssessassassesssessassassenn 24

6.4.1 File And CLASS SIZES...uvieeveeerrreerreerreeenieeereeeereeesseeessreesseeeseeessssessasessseesssesessasessssessssessseenssens 24
6.4.2 ClaSS COMEEIITSuvveieireerireeerreereeenteeenreesireeeseeesseeersseesssseessssessesessaseesssesssesesasessssessssessssennsens 26
6.4.3 Class COMPIEXITIES ..ecuveeieeieeieeieeieetesteeteetesteetesteetesaesaeesaessasssesssasssasssesssesssesssesssesnees 27
LI B Y <14 o o Yo 3 1/ SRR 27
6.4.5 MethOd COMPIEXITIES ..everuiirierierieierteeteseetestese st etestessesseesessesseeseessessessesssessassassesssessassannes 28
6.5 Headers and comments in the SOUICE COAEueevririniriiiiierieieecieeieeeeeeete e e e creeecrae e aeeenns 28
6.5.1 MetricS 0N APT NEAAETIS.....uviereiereeeieeeeeeecreeeteecette et eerreeerreeeesaeeesaeesseeesaeesaeesseesssseenses 28
6.5.2 Global MEtriCS ON COMIMENLESccovvieerreereeerreerreeeeeeeeteeerreeerreeessaeesaeeesseeessesessaeessseesssessses 29

7o REHADIIIEY ..c.uooiiiiieiceecceceese ettt te sttt e s s st et et e s b e st et esbassassbessessasssensensasseen 30

7.1 CIITICAL ISSUES ..vveereeeeeieeitieeciieecte e teeecteeeetee e seeeeaeeeteeesasessasesssessssasansasansasessasesssesassessnsesensannns 30

7.2 IMLQJOT ISSUES .uverurerererrersreretesstesseessresssesssesssesssesssesssessesssesssesssesssesssesssesssesssesssesssesssesssesssasssessees 30

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & %

8. Inspection Of PIECES OF COUE ...cuiruiriiriiriiriiiiierertct ettt este sttt e sae st st et esve s e e s esaasses s essansasseen 32
8.1 IIETOAUCTION ... cuvveetieeetteecteectee ettt et etreceteeceraeeesbeeessaeessaeessseeessseessseensaeensasensseessssessseensneens 32
8.2 DEPENAANICIES. ...euveverererenreritetesieseetestesteseesessessesseesessassasssessessassassesssessassesssessansassesssessassassens 32
8.3 HEAAETS «.ceeveereeeiiecte ettt eetteeetee e teeete e sbe e e baeessae e sseessbaeessaaessaeessasesssseesseeesseensasesasensaesnnes 33
8.4 LINES Of COMIMENTESveeeieieieeeiieeiteeeie et et e eeteeestte e teeestveeeseeesseeesseessseeesseeessessssasessassnsseenses 34
8.5 Global remarks (0n the Whole fil€):.......ccovieriieeiiieeieecreecee e e re e re e ereeesraeens 35

9. Conclusions and recCOMMENAATIONSccevveierurierireerrieeieeeeeeereeerreeertreesaeessreeessreesseeessseessseesseenses 35
9.1 TOP-PIIOTILY veuververierreriieisierieese et et et et ste e bt sese s st seseessessessesssessesssessessesssesssesssesssesssasnne 36
9.2 Other reCOmMMENAATIONSccuveeeiveeeireeeireeerreeerreeerieeerreeerreeersaeessseesseeessesessasessssessseesssesesssessasens 36

10. Annex 1: MetricS defiNITION . ..ccvveereeerieceieeeieeereeeeeeerteee e eerreeerreeestaeeesseessesessasessaeessseesssesensens 37
10,1 SONATQUDE . ..cctieeeiieeereeeteeectteeete e e eeereeesreeessaeessbeeeseeessasessaeesssesessesessasesasessssessseenssesessesesesens 37
Lo TE- XN 055 (<) <] 1 2 (e AU USRS 38
10.3 Annex 3: Dependency graphs by main folder.........c.ccoceeeeiinineneiinnineseneeceeeeeeeenes 40
10.4 Graphs with Python and Javascript languages........ccceeeeeeerriesenessiesienesesssessesessesssessessenns 40
10.1 Graphs with Python language Only.........ccceciecieeieciecieceeceececeeese e eereesve e e esreesseesseesseanns 42

10.1.1 DACKENA /TAUST....ccvieteiiieetiecteeteet ettt ettt e e e e e e st e st e sa e s s esssesssesssessaessaesssansaans 43
10.1.2 backend/tv_plot,tv,plots_STAatiC.....cccevieeieeieeieeieeiecieee et et ee e eeeeer e s e e s e e s ae s e esanens 44
10.1.3 backend/accounts, 1ib, fiZarocceceevveeierieriisieciieeeeerecee ettt 45
10.1.4 DACKENA/TNUSIC ... eeuvieiieiieiieeieeeeee et et et et et e teeete e see s e e eseeesseessassseessasssesssassaeessanssans 46
10.2 Focus on a dependancy (EXAMPIE)ccccceevervierienererrieneneetestesesesstessessessesssessessessesssessassenns 47
11. ANNEX 4 : PYHNT TEPOTT .veievieieiiiicieeieete ettt ete e steestessaessaessae s aesaeetasssessasssasssasssasnsesnees 49
12. Annex 5: sonarQube daShbDOArdc.eeoveeeieeeiiiieniicieceeeeereeeereeeereeeereeereeesreeeeraeessseessseesnses 52

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/0/2019
Quality Analysis report | " V%

2. Purpose and scope

1 Purpose

The purpose of this document is to describe the results obtained in the software quality analysis
and code inspection of the ROC MUSIC software product.

First objective is to HELP the development team.
Please contribute to improve this report.
Any comments, ideas are welcome!
Other objectives are:

e Deliver a Quality status on the code;
e Communicate it to the code authors, the whole development team and managers;
e Possibly set-up action plan for improvement.

For each of the measurements, we cover the following items:

e What is measured and why;

e The measurement tool(s) used;

e The measurement results;

e An analysis of the results and, potentially, actions to be carried out.

The conclusions are derived from good practices and should be taken as a guide instead of a
prescription.

This analysis has been done without knowledge (science, SW implementation...) on this project.
Please do not hesitate to mention any error or misunderstanding.

In the remainder of this report:

Metrics and their rationale are given in italic blue.
h metric, recommended value and applicable vales (from [AD6]) are systematically reminded.

When a metric is over the applicable value, a red font is used (otherwise the
orange font).

Proposals for actions are provided in an orange box.

The list of the metrics used in this document, with their definitions and thresholds, are in the
annex 810 page 37.

The values of these metrics collected by the tools Understand and sonarQube are attached in this

]

MUsIC_Understand

file: ~metrics.xlsx Other definitions and more details are also in this document.

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | = %

This is the first quality SW analysis report on ROC ground software.

A second report (planned on the RSSVC4 milestine, septembre-octobre 2019 TBC), should
be produced on more matured source code and covering more functional features (and

requirements).
2.2 Scope of the analysis
In this first analysis: ‘MUsIC
- Data models are not part of this (software) analysis
- The test folders and test files are not taken into account for this
analysis —
- Only Python files have been selected (*.py) (no analysis done on T v
javascript files)
- the recommandations in this document do not apply on files generated F 1
by Django- Figaro
e 4
The product is introduced in §3 page 7. . |
This anaysis has been done on the main parts of MusIC: T
- 2
- TV
- Figaro
- Faust Opera
-
-
Opera and SISSI will be analyzed later: the specifications of Opera have |
to be refined an the SISSI product will be validated on the flight
acceptance phase. T
%, J

ROC

Ref. SOLO-GS-RP-2460-CNES
Version: 1.0
MUSIC SOftware Date: 26/04/2019
* L Page: 6/52
Quality Analysis report
2.3 Applicable documents
AD Title / Author DG Issue
Reference
1 ROC Software Assurance /Product Assurance Plan ROC-GEN-MGT-QADO0033-LES 1.2
(SPAP)
2 Quality Assurance Specification for Software DNO-DA-AQ-2017-0016646 1.0
Development with Laboratories
2.4 Reference documents
General links
RD Description Adress
1 | sonarQube tool: Metrics definitions https://docs.sonarqube.org/display/SONAR /Metric+Definitions
2 | Understand tool: Metrics & definitions https://scitools.com/support/metrics list?
Clean code - A handbook of agile software s . .
3 craftsmanship R. C.Martin https://sites.google.com/site/unclebobconsultingllc/books
4 | Refactoring techniques https://refactoring.guru/refactoring
N . . M. Fowler. Refactoring. Addison-Wesley, 1999
S Refactoring — Coupling and Cohesion https://martinfowler.com/books/refactoring.html
6 | Metrics definitions https://www.ndepend.com/docs/code-metrics
How to save on software maintenance http://asq.org/public/wgm/how-to-save-on-software-
7 | costs maintenance-costs.pdf
o https://django-testing-
docs.readthedocs.io/en/latest/coverage.html
8 | Python and Django coverage o https:/ /Ww.bedlango.com/blog/ package-week-
coverage-django/
o https://coverage.readthedocs.io/en/coverage-
.4.2/config.html
licences used by the French . .
9 | administrations https://www.data.gouv.fr/fr/licences
10 | PEP S8 https://www.python.org/dev/peps/pep-0008/
Project
RD Title / Author IMDETETL Issue
Reference
11 | ROC Glossary of terms ROC-GEN-OTHNTT-00045-LES 1.0
12 | ROC Engineering Guidelines ROC-GEN-SYSNTT-00008-LE 1.1
13 | ROC Project Management Plan ROC-GEN-MGT-PLN-00013-LES 1.4
14 | ROC Software Development Plan PLN-00015-LES 2.1
15 | ROC Concept and Impelement Requirements ROC-GEN-SYS-PLNO0O0OO2-LES 1.4
Document (CIRD)
16 | ROC Software System Design Document (RSSDD) | ROC-GEN-SYS-SPC00036- 1.0
LES/00
17 | ROC Software System Specification (RSSS) ROC-GEN-SYS-SPC00026-LES 1.0
18 | ROC Software System User Manual ROC-GEN-SYS-SUM-XXXX-LES N/A

https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://scitools.com/support/metrics_list?
https://sites.google.com/site/unclebobconsultingllc/books
https://refactoring.guru/refactoring
https://martinfowler.com/books/refactoring.html
https://www.ndepend.com/docs/code-metrics
http://asq.org/public/wqm/how-to-save-on-software-maintenance-costs.pdf
http://asq.org/public/wqm/how-to-save-on-software-maintenance-costs.pdf

ROC Ref. SOLO-GS-RP-2460-CNES

MUSIC SOftwaI'e \]gzlt'zi;on: ;.8/04/2019
Quality Analysis report

Page: 7/52

3. Information on the project and product analysed

3.1.1 Context of the analysis: periodic software quality analysis

This analysis has been done within the frame of periodic software quality analyses, at least one
per year, or one per minor version number (m in number version M.m.p).

3.1.2 Development team and stakeholders

LESIA is in charge of the global project management, and of operations planning. This includes
the definition of interfaces, the writing of the software tools, and their usage.

The table below lists the main stakeholders of the product analysed:

ROC Project manager Xavier Bonnin
RPW Project Investigator (PI) Milan Maksimovic
ROC Lead software developer
ROC Product PAQA lead

Sonny Lion
Stéphane Papais

More details can be found in the ROC Project Management Plan [RD 13] and ROC Software
Development Plan [RD 14].

3.1.3 ROC software products overview

The ROC Software System (RSS) definition gathers all of the engineering systems required to reach
the ROC functionalities defined in the CIRD [RD 15]. The specification requirements of the RSS can
be read in the “ROC Software System Specification” document (RSSS) [RD17], and the RSS design in
the “ROC Software System Design Document” (RSSDD) [RD16].

ROC Software System
(RSS)

I I

ROC Operations And
Data System (ROADS)

ROC Ground Support
Equipment (ROC GSE)

|

I

I

[

I

I

ROGC Menitoring and) ROC Software Ground SBM Algorithms
Control Subsystem ROSC tf:'. at;:r:lo(cDePsg}ng Segment Equipment Validation software
(MGCS) ubsy (ROG SGSE) (5AVS)

Figure 1: ROC software System product tree [RD 14]

RO C Ref.
MUSsIC Software

Version: 1.0

Date: 26/04/2019
. ° Page: 8/52
Quality Analysis report
RPW Lead Cols,
soc, moc, Im ™
MOC (ESOC) &
k3
:?‘ =
s CDPP
& M data archive
DDs
= ()
LLVM
GFTS (backup)
‘ MEB
B TDEBE » "
‘:‘ —— L1, L2,13, . % ode!
e maodel

3

Solar Orbiter
data archive

MUSIC
(client side)

C-SGSE
%

TV-SGSE) s |

' T
™ TG
S R s P S
& S ™
ROC-SGSE MEB GfE DB
. -
. MEB GSE

1

@:

MEB C-5GSE

Figure 2: RSS overall design (MUsIC highlighted in red)

The ROADS are six main software tools, regrouped into the MCS and DPS sub-systems. One of

them is the MCS User Interface (MUSIC).

SOLO-GS-RP-2460-CNES

ROC

Ref. SOLO-GS-RP-2460-CNES
MUSsIC Softw Dorons 19
S o are Date: 26/04/2019
L] . Page: 9/52
Quality Analysis report
ROC Operations And
Data System [ROADS)
: |
monitaring and Control Data Processing
Supsystem (MCS) Supsystem [DPS)
Elgr:dg :'E“En ‘:n 11| MUSIC common RPW Packet Parzsing [| | Cafbration Wrapper | | THZE:::EPBIIDF
aeecurs =citor backand Library (RPL) {CAWA) oA
(Figara) [THR_CALBAR)
) TDE Calibration
Flight Crperation } 11| Operation File |
Feguest Editor (Faust) | | | MUSIC_IDE Data Requester (DARE) Faguestar (FIRE) (—DESGEEELE&H}
Flight Orperation LFR Csalibration
) netrument T Rate RPW Low Latancy :
Planning Interfacs 1 Data Ingastor (DINGO) 1 1 Softwars unit
[Dears) Calculstor (TRaC) Virtual Machine {LLVI) (LFR_CALBLIT)
SBM Intaractive Inatrumant Power . .
. . RFW Data Access Laysr SCM Calibration
Salaction Syatam 1 Gonzumption Analy=ar Film Maker FILM) HH \ —
Intarface (SIS5]) {Pola) DAL Software (SCMLIRL2S)
. Eiaz Calibration
| RFW Low Latency | | RPW Data Aschive | |
TH/TC Viewer (TV) Pipalins (FLLF) [Dire) {IHFEU‘E"':T'EAB]
Dats Monitoring and | |
Analysis Unit (MORA)
(Legend)

MCS Uzer Intarfaces
MU=lc)

RPW Operationzs and
Drata Pipeline (RODF)

RPW Calibration
Softwars (RCE)

Figure 3: ROC Operations And Data System (ROADS) software products [RD 14]

MUSIC is a Web tool allowing ROC operators to view the mission planning, prepare and submit
the operations requests, but also monitoring downlink/uplink TM/TC data flows and analysing

incoming RPW data.

nearly all the software components.

» The ROC Software Development Plan [RD 14] is clear and describes

This (first) analyses one of the ROC software tools. The next one
should embrace all of them.

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/0/2019
Quality Analysis report | %

3.1.4 The MCS User Interfaces (MUSIC)

The MCS USer InterfaCes (MUSIC) is a Web interface, dedicated to the preparation of the
instrument operations and to the instrument data monitoring.

The MUSIC frontend is composed of five tools [RD 14]:

The RPW TM/TC Viewer (TV), used by ROC operators to promptly visualize the instrument
status, TM/TC history and statistics, as well as the HK/science data.

The RPW Flight Operation Procedure Editor (FIGARO), to create the RPW flight procedures
(RFP) in the expected format.

The RPW Flight Operation Request Editor (FAUST), to prepare and submit to the SOC/MOC
the Instrument Operations Requests (IOR) in the expected format, and in accordance with
the mission planning constraints.

The RPW Operation Planning Interface (Opera), to visualize the mission and instrument
planning and constraints (i.e., allocation resources) and prepare the operations timeline.

The SBM Interactive Selection System Interface (SISSI), to manage and select the
SBM1/SBM2 event data to downlink.

The MUSIC backend is composed of the following components [RD 14]:

MUSIC common backend; the main backend of the MUSIC Web tool, which relies on the
Django framework architecture.

MUSIC_IDB; a module providing a database model to the other MUSIC backend
components, in order to access the RPW instrument Database (IDB) in a standard way.

The IDB used by the ROADS is stored in the ROC MDB. The database model is the same
than for MUSIC (i.e., Django database model).

Instrument TM RAte Calculator (TRAC); a module dedicated to the TM data rate
computation for a given instrument state. Especially, this module serves to compare the
instrument states against the Telemetry Corridors (TMC) provided by the SOC.

Instrument POwer Consumption Analyser (POCA); a module to check the instrument power
consumption.

INstrument Commanding Automaton (INCA); a module in charge of managing the
instrument state model (ISM) of MUSIC.

The architecture of the MUSIC backend also has an interface with the MDB to retrieve/store
related data and meta-data.

ROC Ref.
MUSsIC Software Version:
Quality Analysis report Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

11/52

4. tools and source code inputs

4.1 Environnent

The following table shows the environment and tools used for the analysis of the code.

Name Version
Understand 3.1 (2014)
pylint 1.6.5
sonarQube 7.4 (with the CNES applicable configuration)

The SW quality tools below are not in the project framework (including sonarQube). Their
results are complementary to sonarQube results.

» Understand [2] has been used to analyse the design (dependencies between files)
and to get detailed metrics (down to the method level).

The definitions of the metrics of both sonarQube and Understand are provided in annex §10

page 37.

4.2 Code analysed

The analysis has been carried out over the source code in the GitLab repository. The following
table shows the repository information at the time of the analysis.

Location in CM tool

https://gitlab.obspm.fr/ROC/MUSIC/-
/archive/develop/MUsIC-develop.zip

Location in sonarQube N/A

Release major changes

milestone)

under current development phase (no official release)

Note: a Software Configuration File (or Software Release Note)
[AD 2] is expected for the next official delivery (RSSVC4

This analysis is mainly based on metrics. The advantage is to cover large number of lines of code.
In order to be close to the “real” source code, a (too) short analysis has been done on a piece of
code: see section §8 Inspection of pieces of code page 32.

https://scitools.com/features/
https://gitlab.obspm.fr/ROC/MUsIC/-/archive/develop/MUsIC-develop.zip
https://gitlab.obspm.fr/ROC/MUsIC/-/archive/develop/MUsIC-develop.zip

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | ™ *#%

4.3 Code top-level structure

The ROC Software System Design [RD 2] summarizes in §5.1 the main components and data
composing the system:

APl with endpoints (urls)

Server Web page

ROG Mission Database |

Django Rest Framework React + Redux

Python 3.4+ ECMAScript 6+
\ Backend Frontend
ROC Operations and
Data Pipeline
Figure 4: MUSsIC architecture overview
Backend software:
It is composed of these folders:
accounts
faust
figaro
lib
music
plots_static
ternplates
tw
tv_plot
The “dynamic” of the inernal parts is represneted as below:
-
= —la—n e —
Dalabase Modeis Serialzers Views Urls w User's browsar

- =,

ROC Ref. SOLO-GS-RP-2460-CNES

MUsIC Software D /2010

Quality Analysis report | ™ %

FrontEnd software:

The frontend is based on Reactjs (javascript library) and Redux (for organizing data).
It is composed of these folders:

actions

api
authentication
common
components
constants
containers
faust

figaro
gEnEric

idb

images
music
notification
reducers
sagas

store

styles

utils

websocket

http response

2

API http request

MUsIC backend O Saga

i action T l action |
Y &

action,
prev. state

Store —_— Reducer
=

new state

Asynchronous data flow

action

new state

Action Creator {— Component

event
T user interaction

User

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Date: . 26/04/2019
Quality Analysis report | 7 %

Full contents of the analyzed folders:

Here are the elements analyzed in this report:

UTHORS.rst
ackend
-- accounts

-- faust

-- figaro

-- lib

-- manage.py

-- MUsSic

-- plots static
-- templates

- tests

-= Ty

A
b
|
|
I
|
|
|
|
I
|
|
"-- tv plot

| -- backend
|-- base

| -- config.ini
| -- docker pipeline.info
|-- frontend
|-- pipeline
| -- postgres
"-- s55h _key
-- docker-compose.yml
-- docs
| -- make.bat
| -- Makefile
"-- source

I
|
[
I
I
|
|
I
I
I
[
[
I
| -- docker
I
|
[
I
I
|
|
I
I
I
[
[
I

The figure below is a graphical representation of the MUSIC source code (Python source code
only):

Map metrics for: |File - |
Group by: | Directory Structure = |
Size Options
Map Size to: |CUuntLine - |
Limit the size of large nodes to 100 |5 % of the available space

Color Options

Map Color to: | CountLineCode -

Min Color: Max Color:

ROC
MUSsIC Software
Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

15/52

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software Date: . 26/04/2019
Quality Analysis report | " %

Figure 5: Treemap view of the MUSIC source code (Python only)
(see legend above)

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & 7%

describes nearly all the software components.
An effort could be done on:

- Sections with TBC/TBD, particularly adding static diagrams (eg
class) and dynamic diagrams (eg sequential).
- the “left to be done”, i.e. add more details or quantitative values on

» The ROC Software System Design Document [RD 16] is clear and
the work to be done.

4.4 Product size and category

Some key values give a good indication on the effort to be invested to maintain the project. In
the frame of science source code, where projects range from around 10 to 105 lines of code, let us
introduce the following categories:

e Small project: Less than 1,000 lines of code;
e Medium project: 1,000 to 10,000 lines of code;
e Large project: More than 10,000 lines of code.

In any case, the famous “rule of 30” is a good guideline to ensure that the maintenance will be
reasonable. In terms of metrics, this rule states that:

a) Methods should not have more than 30 code lines (not blank counting lines and
comments).
b) A class should contain less than 30 methods, resulting in up to 900 lines of code.
¢) Apackage shouldn’t contain more than 30 classes, thus comprising up to 27,000
code lines.
The table below is extracted from Understand metrics (see annex §10.2 page 38):

Table 1: Sizing metrics (understand)

Item Count Average sub-element count
Python Modules (files) 115
Classes 276 ~ 2,4 classes per module
Methods 280 ~ 1 method per class
Lines of code 5138 18 lines of code per method

The project is medium-sized i.e. categorized as a medium project.

The breakdown in directories, files, classes, methods and statements seems
globally reasonable at this level of details, with respect to the rule of 30.

The high value of count of classes (and low value of count of methods per class) is due to the
Django “usage”.

For information 8 python files (.py) contain the header “Generated by Django”.

This is only an overview, as introduction: the sections below will provide some details on these
values.

http://swreflections.blogspot.fr/2012/12/rule-of-30-when-is-method-class-or.html

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & %

5. Software engineering compliance

This section provides a status on the compliance of the source code analysed with standard
software engineering rules.

5.1 Configuration management (GitLab)

Table 2: Checks on Configuration Management

Checks Results / Comments
The project should be hosted on the project GitLab
repository to benefit from continuous integration Yes: GitLab fully used
and deployment;
Master and develop branches exist (or equivalent). Yes: branches exist and used
Use tags for official deliveries
Data management: there are no big data files managed OK. None file over 1 Mo.
under CM

5.2 Product documentation

Each product version should have developer and user documentation, in order to ease its
understanding and future maintenance.

Table 3: Checks on Documentation

Checks: the product is... Results /| Comments
is described in a specification or/and design Yes document ROC Software System Design Document
document (RSSDD) [RD 16]
has a Software Configuration File (SCF) or a NOK, SRN to be initialized

Software Release Note (SRN)
There is (updated) information in the gitlab website
(changelog)

has a Software User Manual (SUM) NOK, , SUM to be initialized [RD 18]

There is (updated) information in the gitlab website

has a managed list of issues (Software Problem OK (in Gitlab)
Reports)

» To be discussed with the overall team: Initialize or not these
documents:
o SRN (Software Release Note)
o and SUM (Software User Manual)

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Date: . 26/04/2019
Quality Analysis report | ™ /%

5.3 Generation

The product should be generated and installed easily and terminated with success.

Table 4: Checks on generation tasks

Objective: check the execution of these jenkins Results / Comments
executions phases....

binaries generation (build step) OK
Documentation in the GitLab site clear and complete

Note: prerequisistes to detailed

tests execution (After build step) NOK

quality tools execution (Quality Analysis step) Partially OK (no coverage performed or documented)

The figure below is a snapshot of the web application.

» Set-up unit tests in order to run them with a unique command.
» Then, ensure that the structural coverage is measured in
sonarQube dashboard.

ROC
MUSsIC Software
Quality Analysis report

Ref.

Version:

Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

20/52

6. Maintainability

Maintainable software allows to quickly and easily:

Fix a bug, without introducing a new bug

Add new features, without introducing bugs

Improve usability

Increase performance

Make a fix that prevents a bug from occurring in future

Bring new developers on board the project

Make changes to support new environments, operating systems or tools

The sub-sections intend to check maintainability characteristics from metrics values.

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Date: . 26/04/2019
Quality Analysis report | 7 /%

6.1 Dependencies

The goals of this verification are the following:

- Help the reader to understand the “dynamic” organization: what calls what?

- Identify packages which depend on many others,

- List packages with cyclic dependencies (package A calls B, which itself calls A).

The tool Understand V3.1 has been used in this section for its results on the dependencies
between files: calls, includes/imports, inherits, implements, inits, overrides, modifies, sets,
throws, uses...

The top-level level dependency graph is the following (divided in 2 parts, for convenience):

MU=IC

MUsIC/docs
41 MUsIC/webpack
MU=IC/ frentend

3
./ UsiC/backend

j&_dependencies.py

py_dependencies.py

Figure 6: Top-level dependency graph

The tool highlighted cyclic dependencies (see the red arrows in the graph above) between:
» components
» modules (see example of dependancy in §10.3 page 40).

The cyclic dependencies between these methods have not been identified in this report (lack of
time).

o Modules (major)
> Redesign the classes if necessary (a lot of books and internet sites offer
recipes to fix the cyclic dependencies)

> Possibly identify the cyclic dependencies, between:
o Methods (critical)

ROC Ref. _ SOLO-GS-RP-2460-CNES
MUsIC Software et 36/0af2010
Quality Analysis report | ™ */%

6.2 Design analysis

Coupling and cohesion are both indications of the quality of the design.
They have not been analysed in this report (no tool available for Python code).
A quick look on the inheritance tree has been performed.

There are 242 classes : 58 % of the classes have a inheritance tree level (or depth) at 1,
level 2: 12%, level 3: 4% and level 4: 25%.

Mombre de MaxInheritanceTree

= [vide)

Comments:
e When possible, use the Object Programming Concepts (here use inheritance)
e Stick nevertheless to the “good” practices in term of architecture: inheritance has to be
implemented only if the subclass is an extension of the superclass, not in order to

combine common code (e.g. A new subclass should not violate the Liskov substitution
principle [RD 4], [RD 5]).

6.3 Duplications

Code duplication is a very important measurement from the maintenance point of view.
Indeed, the effort to modify duplicated code might become prohibitive if one has to ensure that
duplicated lines should remain the same. Duplication rate should therefore be exactly
0%.

sonarQube is able to detect the number of duplicated blocks of lines (see definition in §10.1 page
37)-

https://docs.sonarqube.org/display/SONAR/Metric+Definitions

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | " */%

Music £~ to selectfiles : - | to navigate 124 files
Duplicated Lines (%) 1.2% New code: since previous version
Duplicated Duplicated
Lines (%) Lines
[=] backendfaustparsers.py 18.3% 74
[l backendtv_plotviews.py 10.5% 22
There are 98 hidden components with a score of 0.0%. Show All
Example of duplication block found:
MUsIC / backend/faust ' parsers.py i k | to nextprevious file 1/ 100 files
4bo I ASSert SN1TT_Ouratlion >= @
366
367 parameter_list_node = self.find(sequence_node, 'parameterList')
368 sequence_data[' formal_parameters'] = []
369
376 # get the corresponding sequence parameters description from figaro
371 I (~] fp_description_gs = figaro_models.TelecommandParameter.objects. filter(is_formal_parameter=True,
372 [~] statement__sequence__name=
373 @ sequence_node.attrib['name'])
374 I fp_description_list = fp_description_gs.values('srdb_id"')
375
376 # 1T the FP list is not empty
arT I if parameter_list node is not None:
378

This block is similar as this one, in the same file:

242 parameter_list node = self.find(sequence_node, 'parameterList')

243 I sequence_datal['formal_parameters'] = []

244

245 # get the corresponding sequence parameters description from figaro

246 I (~] fp_description_gs = figaro_models.TelecommandParameter.objects.filter(is formal _parameter=True,
247 (] statement__sequence__name=
2438 [~] sequence_node,attrib['name'])
249 I fp_description_list = fp_description_gs.values('srdb_id')

250

251 # If the FP list is not empty

252 I if parameter_list_node is not None:

We can consider that this status does not present a risk for the maintenance, considering the Django specificities
and “current usage” by developers.

acceptable

Analyse nevertheless each duplicated block of code and, if the
duplication is considered by the team as a risk for the maintenance,

» The count of duplicated lines is not important and considered as
try to reduce.

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Date: . 26/04/2019
Quality Analysis report | & /%

6.4 Sizes and complexities

6.4.1 File and class sizes

As stated in §4.4 page 17, a class should contain less than 30 methods, resulting in up to 1000
lines of code.

Another close and interesting metric is the number of classes in a source file.
Placing each class in an individual file promotes reuse by making classes easier to see when

browsing the source code: a reasonable value is consequently 1: a source file should contain
only one class.

The figure below shows the distribution of the number of source lines of code per source code file.

350

150 i
100
50

0

‘U

HWWWWWWMWWWWWWWMN

] T 0 O O O ¢ s 1 e e £ e e e £ e e e £ £ e e
™ o < d M~ W oo Mmoo O 00 M~ W W
i ™ & G i N o uy WO~ o oo oh O = N
e I s e e I I e s s

B Countline CountlLineCode

Figure 7: Number of source lines of code par class (Understand)

The table below shows the largest files. No one overpassess the recommended count of lines of
code (1000 lines).

Kind Name CountDeclClass CountlLine CountLineCode
File MUsIC\backend\faust\renderers.py 5 397 267
File MUsIC\backend\faust\parsers.py 4 403 264
File MUsIC\backend\faust\views.py 6 398 256
File MUsIC\backend\faust\management\ 2 340 217
commands\generate_ior.py
File MUsIC\backend\figaro\parsers.py 2 290 204
File MUsIC\backend\figaro\formal_validation_serializers.py 13 266 180
File MUsIC\backend\figaro\serializers\statements.py 14 268 170

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & */%

The figure below show the distribution of the count of classes by file. For example, 44 files do have
any class. 34 files have one class, 7 files have 3 classes etc.

Mombre de CountDedClass
50

45

CountDedClass =

The table below shows the files having the most count of classes. As shown above, a lot of files (37
classes ie 32% of the python files analyzed) have more than the expected count of classes, i.e 1 class
only.

Name CountDeclClass CountLine CountLineCode
MuUslIC\backend\faust\serializers.py 23 238 162
MUslIC\backend\faust\models.py 16 166 122
MUslIC\backend\figaro\serializers\statements.py 14 268 170
MUslIC\backend\figaro\formal_validation_serializers.py 13 266 180
MUslIC\backend\figaro\models\statements.py 11 97 67
MUslIC\backend\figaro\admin.py 10 53 32

As stated above, this status is not considered as a risk because due to the Django specificities.
There are maybe possibilities of improvement (generic declarations and initializations...) but we
leave here the development team to choose their best way to manage their database.

Let’s focus on the first file : backend/faust/serializer.py. The snapshot below can be considered
as a typical way to serialize Django data:

(Django guide: “Serializers allow complex data such as querysets and model instances to be
converted to native Python datatypes that can then be easily rendered into JSON, XML or other
content types.”)

https://www.django-rest-framework.org/api-guide/serializers/

ROC
MUSsIC Software
Quality Analysis report

Ref.

Version:

Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

26/52

GUE,
20
ol
52
S
=T
)
56
S

0
o

S
60
61
b2
63
64
B3
13
67

=
63
T0
71
73

o

Fleolass SegFpSerializer(serializers.ModelSerializer):

SeqFp 3erializer
= class Meta:
model = models.SegFp
fields = ' =211 '
i read only fields = ('ssquence’,)
clazss SegqunenceSerializer(serializers.ModelSerializer):
duration = serializers.IntegerField(read only=True)
clas=s Meta:
model = figaro models.Sequence
fields = {('duration', 'mame', "description')

clazss ScenarioSegSerializer (WritableNestedModelSerializer):

ScenarioSeq Jerializer

formal parameters = SegFpSerializer (many=True)

In summary the distribution of classes in files, due to Django here, seems acceptable.

6.4.2 Class contents

As stated above, the rule of 30 holds for classes, which means that there should be no more than
30 member variables and no more than 30 methods in a class.

The histogram of variables and methods per class built from Understand's outputs is following:

Somme de CountDedInstanceVariable

Somme de CountDedInstanceMethod

Figure 8: Number of variables and methods par class

18 classes have 3 variables

ROC

Ref. SOLO-GS-RP-2460-CNES

MUSIC SOftwaI'e \]gzlt'zi;on: ;.8/04/2019
Quality Analysis report

Page: 27/52

- 56 classes have 2 methods

The results are fully compatible with the rule of 30:

- All the classes have less than 30 methods

- All the methods have less than 30 instance variables

Alarge number of classes show “well-balanced” classes in terms on contents and none class
exceeds the limit number of methods or variables (Note: the threshold of 30 is very high: it is
recommended in Clean Code [RD 3] to not exceed 14 methods).

The table below shows these values and the Maximum cyclomatic complexity of all nested

functions or methods (per class).

6.4.3 Class complexities

The complexity of a class or method may be measured by different means. The sections below are
based on the simplest metrics: lines of Code and cyclomatic Number.

Mombre de MaxCycomatic

0 ik 2 3 4 5 6 8 41 10 14 (VIDE)}

MaxCyclomatic «

MNombre de AvgCydomatic

Total

AvgCydomatic

Figure 9: Class complexities

The figures above show that all most of the classes have an average cyclomatic value compliant
with the max expected (20). and none MaxCyclomatic number is beyond the this recommended

value.

6.4.4 Method sizes

As stated in §4.4 page 17, methods should not have more than 30 code lines.

The max mandatory value is 100.

None method overpasses the max value, i.e. has a count of lines of code less than 100.

https://en.wikipedia.org/wiki/Cyclomatic_complexity

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & /%

6.4.5 Method complexities

Functions with too high complexity are error-prone. Functions should be as simple as possible
in order to ensure smooth testing and maintenance. To this end, two metrics are evaluated:
e The cyclomatic complexity is the number of decision points ("while", "for",
“foreach”,
“continue”, "if","case", "goto", “try” and “catch”...) plus one;
It should be as low as possible, and certainly not higher than 10.
e The nesting level is the number of nested blocks (conditions and loops); It is 0 or 1
in ideal cases, and should definitely not be higher than 5.

When complexity is too high, a simple solution is to split the method in submethods.
None method overpasses the max value, i.e. has a complexity higher than 25. In addtion the nesting level is always less |
egual to 5.
6.5 Headers and comments in the source code

6.5.1 Metrics on API headers

Documenting the API of the project inside the source code is of utmost importance because this
is generally the most up-to-date documentation. Specifically, public items should absolutely be
documented.

Check the sonarQube metric “Density of public documented API”, which threshold expected
value is 100%.

Sonar reports (see §11 page 49) show that ...the tool has not been able to collect metrics on API
items (type: file/class/method,...).

Another tool has been used: pylint, which output on docstrings is following:

e e e £
| type | number |% |
| code |4535 |55.87 |
- - - +
|docestring |1122]13.81 |
- - - +
| comment | 750 |2.23 |
e e e £
| empty |1713 |21.09 |
e e e £

About 13% of the source code has docstrings and about 9 % has comments.

This quick and straight analyse show an important lack of commenting in the code, on public
methods.

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & */%

In conclusion, we consider globally that the API headers are missing in the global
source code.

Deploy the expected headers to the whole code (files, classes, methods).

Be compliant with the Python docstrings format in the Coding Standards [RD 10],
i.e. Use NumPy Style for Python Docstrings

» Major recommendation: add docstrings on the public methods.
>
>

6.5.2 Global metrics on comments
Density of comment lines is a degree of commenting within the source code. It measures the
care taken by programmers to make the source code and algorithms understandable.
Poorly commented code makes the maintenance activities an extremely expensive. Applicable
minimum is 30% in the Coding Standards [AD 6].
Important note: this metric has to be balanced with the metric Density of public documented
API. It is reasonable to get a low density of comment lines under the expected value in (small)
methods which header is complete.

The average comment density measured by pylint is around 9 % (see above).

The figures below illustrate this statement (e.g. 205 methods have 0 or 1 line of comment)

CountLineComment

Ratio of comments (%)

0 50 100 150 200 250 300
Functions

Figure 10: distribution of comment density

> As stated above, put the effort on the headers (almost at method level). When done,
add comments if necessary.

https://euclid.roe.ac.uk/projects/coding-standards/wiki/User_Cod_Std-pythonstandard-v1-1#Use-NumPy-Style-for-Python-Docstrings

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & /%

7. Reliability

Some issues in the code might prevent it to run smoothly (e.g., memory leaks). They should
be solved.

There are only 9 critical issues and 618 major issues reported by sonarQube.
The cost of accumulating technical debt is around 77 days .

7.1 Critical Issues

These issues are seen as critical by Pylint and current CNES rule profile file:

(Python) Ungrouped imports

Pa

(Python) Wrong import order

» recommandation on style: possibly re-arrange the oder of the import operations

7.2 Major issues

These issues are seen as major by Pylint and current CNES rule profile file:

(Python) Docstrings should be defined 316
(Python) Lines should not be too long 193
(Python) Source files should have a suf... 60
{Python) Functions should not contain t... 27
(Python) Sections of code should notb... 12
(Python) Undefined variable |

(Python) ™" should onlybe used asane... 3

Pa

(Python) Function names should comply...

We consider in this first analysis that there are no bugs that could alter the realibility.
We strongly recommend nevertheless to treat these messages, having an impact on the

maintenance cost.

Reminder: these recommandations do not apply on files generated by Django. The count of
messages (by issue) have been reminded par parenthesis below:

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | " /%

oy

0

&

+

&t

o

g N

Issue “Add a docstring to ...” (316) : see recommandation above

Issue “The line contains ... characters which is greater than 100 authorized.” (193) : use the
continuation line recommandations in PEP8

Issue “more comment lines need to be written to reach the minimum threshold of 20.0%
comment density.” (60) : add comment in targeted methods

Issue “This function has 2 returns or yields, which is more than the 1 allowed” (27) : factorize
“Return” statement in targeted methods

Issue “Remove this commented out code.” (12) : Once the source code will be ready for
production, delete the commented out code or replace them by “human” comment (and not
statements)

Issue “Undefined variable ‘...”
and possibly fixed.

(5): It seems that this is a false error message: to investigated

Issue “remove the ‘\’...” (2) : a pattern is used in the targeted methods: no fix recommended.

Issue “rename function ... to match the regular expression”: follow the naming rule.

ROC

MUSsIC Software
Quality Analysis report

Ref.

Date:
Page:

Version:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

32/52

8. Inspection of pieces of code

In order to analyse (quickly) a portion of code, let’s take an example with the file

MusIC/backend/faust/views.py

8.1 Introduction

8.2 Dependancies

All he possible links around the file are represented here:

MuUsIC/backend

MUsIC/backend/figaro

~,

parsers.py

renderers.py

serializers.py

urls.py
1

\
fiters. py —_t __init__.py

>

The file contains 6 classes, derived from APIView, ModelViewSet and ListDestroyModelMixin:

Name CountLine CountLineCode

faust.views.EfecsUploadView 26 16
faust.views.MtpinfoViewSet 6 6
faust.views.ScenarioSeqViewSet 45 26
faust.views.ScenarioViewSet 243 169
faust.views.SeqFpViewSet 6 6
faust.views.StpInfoViewSet 6 6

ROC Ref. SOLO-GS-RP-2460-CNES
MUSIC Softw Dorsion: 12
S o are Date: 26/04/2019
Quality Analysis report | ¥ 3/
| APView I ModelViewSet | ListDestroyModelMixin
e H“‘“——__
!’f’ = - __‘__"“k—__
//_7/ / _\ %-HE"“*-&
faust.views EfecsUploadView faust.views MtplnfoViewSet | faust views ScenarioViewSet | faust.views. SegFpViewSet faust.views . StpinfoViewSet faust.views. ScenarioSeqViewSet
I +post 1 T +export_manual_stack [1 | 1 | +create |

| | +upload

8.3 Headers

The file header is not documented and does not include Copyrights . See the link [RD 9]:

licences used by the French administrations.

1 import io

2 import zipfile
3 from datetime import datetime, timedelta
= from dateutil.parser import parse as parse datetime

$ from diango.dh.models import F

1 &

from django filters.rest framework import DjangoFilterBackend

from faust.parsers import EfecsParser

[Te S]

from figaro import models as figaro models

There is a (short) description of the class and none API description in all the public methods:

When a method has parameters, there are no comments on them (type and description):

xzml data = regquest.data

(=]
[I B e

Lo L Lo L

The reviewer might have difficulties to distinguish/identify the type of the parameters. It seems clear

print{'filename:", filename, 'efecs xml d

def post(self, regquest, filename, format=None) :

that priority has to be done on adding headers on methods, like done in numpy math library:

2", xml data)

print{'The following MTP= have been parsed:'

ROC
MUSsIC Software
Quality Analysis report

Ref.

Version:

Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

34/52

def function_with_pepd484_type_annotations(paraml:

"""Example function with PEP 484 type annotations.

The return type must be duplicated in the docstring to comply
with the NumPy docstring style.

Parameters

paraml

The first parameter.
param

The second parameter.

Returns

True if successful, False otherwise.

wanan

int, param?: str) -> bool:

8.4 Lines of comments

There is only a few comments in this file. As stated above, it seems that 9% of the source code

has comments.

This “numeric” statement should nevertheless been mitigated because the source
code is generally very clear and easy to understand (i.e. line by line in a method).

;%]
Ln
(]
-

def export(self, request, pk=Hone):

%]
Ln
I

252 Define specific URL for C-5G3E/ICR exports

755 o

254 $# get the =cenaric instance

255 instance = self.get object()

256 scenario_type = reqguest.accepted renderer.format
257

258 # select the appropriated gerializer

255 =l if scenarioc_type = 'csgse'i

260 serializer = serializers.C=sgseScenarioSerializer({instance,
261 B response = Response (serializer.data)

262 E] €lif scenario type — 'pdor’

ROC
MUSsIC Software
Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

35/52

8.5 Global remarks (on the whole file):

- Class documentation: more information on this class could be useful: prerequisites, limitations,

TODO...

- The code is easy to read, i.e. do not have “technical” python lines difficult to understand.
The difficulty is to disentangle the entities used and also the level of tasks implemented.
...it is true that the “features” to be implemented are not easy to code: it’s not as “structured” as a

scientific algorithm, or pure IT topic (as code a linked chain).

- Methods: they are small (exept ScenarioViewSet) and easy to read.

o They are focused on a single task and globally well named.

o Unit-testing of these methods should be easy to set-up. If tests are easier to write for

independent methods, then split the big method up

- Alot of constructors and public methods do not have checks on the parameters validity
(see the Python 3.x, function annotations, variables checks with isinstance(obj, type),
issubclass(obj, class), hasattr.. or also Type Enforcement accept/returns decorators from

PythonDecoratorLibrary).

If the development team want to be strictly “pythonic”, fulfil then the headers with

doctrings and add unit tests with specific input parameters.

- There are not globally hard coded values

- Log: use Python libraries (avoid ‘print’)

- Exceptions: they are not used in this file et globally in the full code.

9. Conclusions and recommendations

This product is the result of an important work done and represents a critical added value for the
ROC project (source code, architecture, production environment, documentation...).

After analysis, we have the feeling that each line of the code is the result of both a global analysis
(the Specification and design documentation [RD 16] is clear) on the features to be implemented

and a response to concrete and “daily” challenges /tasks to implement.

Each line is thus written for an operational goal, contributing to the software performance.

strengthened:

We consider that a major action, even if it already started, has to be continued and even

The source code does not have risks for the realibility.
Continue to improve the maintainability.

This would greatly help future maintainers: recent studies show that some 40-60% of the
maintenance effort is devoted to ...only understanding the source code [RD 8]

https://docs.python.org/3/library/typing.html
https://wiki.python.org/moin/PythonDecoratorLibrary

MUSIC SOftware \lgizi:on: ;.8/04/2019
Quality AnalySiS I’ep()rt Page: 36/52

The surveys confirmed also that source code and comments (including headers in classes and
methods) are the most important artefacts for understanding a system to be maintained.

The following section lists conclusions and recommendations derived from the analysis
described in the remainder of the document.

As stated in the introduction of this report, these proposals for action are derived from
good practices and should be taken as a guide instead of a prescription.

The developers should feel free to implement or not the proposed changes.

9.1 Top-priority

1.

An important effort should be put in providing more details in the public API
documentation: add headers (i.e; docstrings) in the source code, at least on the
classes and public methods. This is crucial for understanding the code. And continue
to improve it later.

Set-up unit tests in order to run them with a unique command (possibly using a
simple command)

Try to decrease the issues raised in sonarQube and possibly follow the
recommandations stated in §7 page 30)

Improve the sonarQube configuration: ensure that the structural coverage is
measured and reinforce python rules in SonarQube.

Avoid cyclic dependencies, at least at module and method level

9.2 Other recommendations

a.

The ROC Software System Specification [RD 16] is clear and describes nearly all the
software components.

An effort could be done on the “left to be done”, i.e. add more details or quantitative
values on the work to be done (ex: add new column in table in §4.3 page 10 and add
details as “IORs generation: 40% left to be done...”)

A few files and classes are relatively important (lines of code, complexity): pay
attention not grow again these entities.

Initialize Software Release Note and Software User Manual documents (planned on
the RSSVC4 TBC)

The file headers is not documented and does not include Copyrights. See the link
[RD 9]: licences used by the French administrations

ROC Ref. SOLO-GS-RP-2460-CNES

ROC Ref. SOLO-GS-RP-2460-CNES

MUSsIC Software Dot seyoa/2019
Quality Analysis report | ¥/

10.Annex 1: metrics definition

Refer to the Excel file joined for more details (« Metrics definitions » table).

10.1 sonarQube

SonarQube
Category Metric Threshold https://docs.sonargube.org/display/SONAR/MetrictDefinitions
~ ~ ~ Metric ~ Definition T
Number of comment lines comment_lines Number of lines containing either comment or commented-o

Documentation
Number of comment lines with respect to total Lines Of Code

. - . : _ : Comment lines / (Lines of code + Comment lines) * 100
Density of comment lines % (Min) 0.3 Density of comment lines

Number of public API comment lines with respect to total

Public documented AP1 % {Min) 100 Density of public documented API)
Lines Of Code

It is the complexity calculated based on the number of paths
through the code. Whenever the control flow of a method
Complexity Complexity / function (Max) 10 Complexity splits, the complexity counter gets incremented by one. Each
method has a minimum complexity of 1.

This calculation varies slightly by language because keywords
and methodalities do.

. . hon: pylint:arguments for function
Design Parameters/function{Max) 7 Pyt) d

/ method python: max-args=5
Blocker severity : Operational/security risk: This issue might
Issues Blocker issues (Max)] Blocker issues make the whole application unstable in production. Ex:

calling garbage collector, not closing a socket, etc.

Operational/security risk: This issue might lead to an

Critical issues (Max) 0 Critical issues unexpected behavior in production without impacting the
integrity of the whole application. Ex: NullPointerException,
badly caught exceptions, lack of unit tests, etc.

This issue might have a substantial impact on productivity.

Major issues (Max) 1] Major issues
Ex: too complex methods, package cycles, etc.

Note:The same kinds of metrics exist for Integration tests
Unit tests (Min) 1 Unit tests (Min) coverage and Overall tests coverage (Units tests + Integration
tests).

test_success_density:Test success density = (Unit tests - (Unit

Unit tests Success % (Min) 100 Unit test success density (%)) ,)
test errors + Unit test failures)) / Unit tests * 100

0On a given line of code, Line coverage simply answers the
following question: Has this line of code been executed
during the execution of the unit tests?. It is the density of
covered lines by unit tests:

Tests

Line coverage % (Min) 70 Line coverage Line coverage =LC / EL
where

LC =covered lines (lines_to_cover - uncovered_lines)
EL =total number of executable lines (lines_to_caover)

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & /%

10.2 Understand

The following metrics have been exported in the Excel file attached:

Metrics To Export

| CountDeciFile

CountDeclClass
CountLine
CountLineCode
CountLineComment
RatioCommentToCode
CountClassBase]
CountClassDerived ‘
MaxinheritanceTree |
CountDeclinstanceMethod
: 1]
CountDeclinstanceVariable
Cyclomatic :
MaxCyclomatic |
AvgCyclomatic
MaxNesting
Understand
Category Metric Threshold https://scitools.com/support/metrics list?
7 7 = Metric ~ Definition Bl
Number of lines containing comment. [aka CLOC]
Number of comment lines CountLineComment This can overlap with other code counting metrics. For instance int j = 1; // comment has a
comment, is a source ling, is an executable source line, and a declarative source line.
Documentation Example: https://scitools.com/documents/imagesMetrics/CountLineCommentC.png
. . . B Ratio of number of comment lines to number of code lines. Note that because some lines are
Density of comment lines % (Min) 0.3 RatioCommentToCode B o B
both code and comment, this could easily yield percentages higher than 100
Exemple: https://scitools.com/documents/imagesMetrics/RatioCommentToCodeC.png
A ge Cyclomatic Complexity
Description: Average cyclomatic complexity for all nested methods or methods
Example: https://scitools.com/documents/imagesMetrics/AvgCyclomaticC.png
‘Complexity / function (Max) 10 AvgCyclomatic Max Cyclomatic Complexity
Description: Maximum cyclomatic complexity of all nested methods or methods.
Complexity Example: https://scitools.com/documents/imagesMetrics/MaxCyclomaticC.png
Description: Maximum nesting level of control constructs (if, while, for, switch, etc.) in the
Nested loops / function {(Max) 5 MaxNestin e
= E Detailed Example:https://scitools.com/documents/imagesMetrics/MaxNestingC.png
Research: Chidamber & Kemerer —Lack of Cohesion in Methods (LCOM/LOCM)
Description: 100% minus average cohesion for class data members. Calculates what percentage of|
class methods use a given class instance variable. To calculate, average percentages for all of that
Design Lack Of Cohesion % (Max) 50 PercentLackOfCohesion class’es instance variables and subtract from 100%. A lower percentage means higher cohesion
between class data and methods.

ROC

MUSsIC Software
Quality Analysis report

Ref. SOLO-GS-RP-2460-CNES
Version: 1.0

Date: 26/04/2019

Page: 39/52

Coupling Between Objects (Max)

10

CountClassCoupled

Description: The Coupling Between Object Classes (CBO) measure for a class is a count of the
number of other classes to which it is coupled. Class A is coupled to class B if class A uses a type,
data, or member from class B. This metric is also referred to as Efferent Coupling (Ce). Any
number of couplings to a given class counts as 1 towards the metric total

Example: https://scitools.com/documents/imagesMetrics/CountClassCoupledC.png

Size

#classes by file

CountDeclClass

Number of classes

methods/class (Max)

CountDeclinstanceMethod

Number of instance methods —methods defined in a class that are only accessable through an
object of that class
Ex: https:/fscitools.com/documents/imagesMetrics/CountDeclInstanceMethodC.png

#variables/class (Max)

CountDeclinstanceVariable

Number of instance variables —variables defined in a class that are only accessable through an
object of that class

Ex: https://scitools.com/documents/imagesMetrics/CountDeclInstanceVariableC.png

i lines of code/class (Max)

AltAvglineCode (class level)

Average number of lines containing source code for all nested functions or methods, including
inactive regions.
Ex: https://scitools.com/documents/imagesMetrics/AltAvglineCodeC.png

i lines of code/method (Max)

AltAvglineCode (method lev|

Average number of lines containing source code for all nested functions or methods, including
inactive regions.
Ex: https://scitools.com/documents/imagesMetrics/AltAvglineCodeC.png

Issues

1t duplicated lines (Max)

duplicated_lines_density

Density of duplication = Duplicated lines / Lines * 100

Duplicated lines = Number of lines involved in duplications.

ROC
MUSsIC Software
Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0

26/04/2019

40/52

10.3 Annex 3: Dependency graphs by main folder

The figures below are provided only for information. Please contact the reviewer for more details

(Such pictures could be added values in the Software Design Document).

10.4 Graphs with Python and Javascript languages

Webpack and Backend directories:

MUsIC

MUsIC/webpack

dev.config.js 3

-~ ————— prod.config.js

-

comman.config.js

41

MUsIC/backend

MUsIC/backendity

MUsIC/frontend

x MUsIC/backend/faust o 297

—_— 27

— 62
MU=IC/backendtemplates.

js_dependencies.py
MUsIC/backend/plots_static

.—-—''_'_'_é_._'_'_'-.

MUsIC/backend/accounts

MUsIC/backend/music

MUsIC/backend/lib

py_dependencies.py
MUsIC/backendity_plot

manage.py

T — e
—* MUsIC/backend/figaro

1/9

ROC Ref. SOLO-GS-RP-2460-CNES

MUSsIC Software Date: . 36/04/201
Quality AnaIYSiS rep()rt Page: 41/52

FrontEnd directory :

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software et 36/0af2010
Quality Analysis report | & #/%

10.1 Graphs with Python language only

¢ MUSIC)
MUsIC/backend N
MUsIC/backend/faust MUsIC/backenditv_plot
2317
7
MUsIC/backend/figaro 971

1 -
MUsIC/backend/plots_static MUsIC/backend/imusic

MUsIC/backend/ty /

MUsIC/backend/accounts

MUz=IC/backend/lio

manage.py

MUsIC/docs

py_dependencies.py

js_dependencies.py

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software et 36/0af2010
Quality Analysis report | & %%

10.1.1 backend/faust

MUsgIC

MUsIC/backend

4

MUsIC/backend/faust/migrations admin.py

urls.py

10

apps.
ops-py Views.py

—— MUsIC/ba

8i1

MusIC/backend/plots_static

MUsIC/backend/ty
7
MUsIC/backend/lib MUsIC/backend/tv_plot 5
manage.py MUsIC/backendfaccounts

MUsIC/docs

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software et 36/0af2010
Quality Analysis report | ™ #/%

10.1.2 backend/tv_plot,tv,plots static

MUsIC

WMUsIC/backend

MUsIC/backend/tv_plot/migrations

MUsIC/backendity_plot/management

uris.py

apps.py

MUsIC/backenditv_plot

admin.py

paginators.py

renderers.py

ViEwWSs.py &

models.py

\ /

seriglizers.py

fitters.py

MUsIC/backend/tv/migrations

WUsIC/backend/v

WMUsIC/backenditv/management

L]
\ admin. py
3
1 . \
urls. py —nt__.py models py
T S _—
views.py — 005 seriglizers. py
apps.py 4
MUsIC/backend/plots_static
MUsIC/backend/plots_static/migrations.
/ seriglizers.py z
: . | 3\‘
uris-py Views.py admin.py models.py
\L/’/.
apps.py
_int__py
MUsIC/backend/figaro EX MUsIC/b
f__EE.LL—-‘"" I bacl
-
WMUsIC/backend/lib WMUsIC/backend/faust 62
5
manage.py
MUsIC/backend/accounts
MUsIC/docs

js_dependencies.py

py_dependencies.py

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software et 36/0af2010
Quality Analysis report | ™ %/

10.1.3 backend/accounts, lib, figaro

MUsIC

WUsIC/backend

MUsIC/backend/accounts

MusIC/backend/accounts/migrations.

_init__.py

admin.py

MUsICibackend/it

urls. L]
o iews. By 8 serializers py
" 8 models.py
5]
MUsIC/backenditv_plot
-*—-1___‘1__1_‘1_-‘
i MUsIC/backend/music
/ 8

/ WUsIC/backend/faust

MUsIC/backend/figaro

admin.py

MUsIC/backend/figaro/migrations

MuUsIC/backend/figaro/management 3

MUsIC/backend/figaro/helpers

7

urls.py - = excel_readerpy

views.py

parsers.py

2

apps.py renderers.py

constants py

MUsIC/backend/plots_static

MUsIC/backendity

manage.py

MUsICidocs.

js_dependencies py

py_dependencies.py

ROC

Ref. SOLO-GS-RP-2460-CNES
MUSsIC Software bate ™ 56
Date: 26/04/2019
Quality Analysis report | ™ 45
.
10.1.4 backend/music
MUsIC
5 MUsIC/backend
1
MUsIC/backenditv_plot
mana 1
5
7 \ MUsIC/backendimusic
20 | __» renderers.py tools.py
lUsIC/backend/faust 1 [~ models.py
ol & /
3 |-
serializers.py
L— X
237 2 __init__py
views.py
MUsIC/backend/figaro /
MUsIC/backend/plots_static
mixing. py
settings.py
routing. py
MUsIC/backendity T
urls.py
2 ith_tok
wsgipy Py we_auth_token.py 2
2
db_router.py MUsIC/ba
parsers.py
asgipy <
WUsIC/backend/lin 2
MUsIC/backend/accounts
MUsIC/docs
j8_dependencies. py
py_dependencies.py

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & ¥/

10.2 Focus on a dependancy (example)

Let’s focus on one of these red lines, supposed to identify a mutual or cyclic dependancy:

¢ MUsIC 7
¢ MUsIC/backend A
MUsIC/backendifaust
MUsIC/backend/figaro 6/4
renderers.py
e, A
L A

renderers.py Import Implicit __init__.py at renderers. py ()
renderers.py Import Implicit __init__.py at renderers.py (7}
add_sequence Use palizade_id at renderers.py(307)
add_sequence Use palizade_id at renderers.py(321)

renderers.py Import From renderers.py at renderers. py(S)
renderers.py Import CsgseRenderer at renderers.py(s)
CzgzeSequenceRenderer Inherit CzgzeRenderer at renderers. py(209)
populate_root Call populate_header at renderers.pwi(219)
populate_root Call check_idb at renderers. pw(Z21)

populate_root Call add_sequence at renderers.py(224)

ROC Ref. . SOLO-GS-RP-2460-CNES
MUSsIC Software et 36/0af2010
Quality Analysis report | ™ /%

The detailed graphs show the input and ouput links:

MUsIC

MUsIC/backend

1

MusiC/backend/figare/migrations

parsers.py

—

N excel_reader,
WUsIC/backend/figara/management admin. py - By

urls.py

WUsIC/backend/figaro/models _init__.p
apps.py

formal_validation_serializers.py

constants.py

MUsIC/backend/faust

renderers.py 1

This one shows only the cyclic links between MusIC/backend/faust and MusIC/backend/figaro:

MUsIC

MUsIC/backend

MUsIC/backend/faust

renderers.py

1 \ Wﬁgam \
13 1

MUsIC/backendifigaro/zenializers —————* MWUslC/backendifigaro/models ———— = it

_.py
\5—/1//

\“-______ renderers.py

MusIC/backend/figaro/renders.py import code from MusIC/backend/faust:

MUSsIC Software Dot seyoa/2019
Quality Analysis report | & */%

import datetime

import io

import xlwt
from faust.renderers import CagsceRenderer

from rest framework.renderers import EBEaseRenderer

I B T 4 Y O B

And MusIC/backend/faust/renderers.py import code from MusIC/backend/figaro:

import datetime
import uuid

from zml.etree.ElementTree import SubElement

from dateutil.parser import parse as parse datetime
from django.utils.timezone import now
from figaro.models import Telecommand

B =] on s L R

from music.renderers import XmlEenderer

Fomm Fom———— Fo———— Fomm Fom e ——— +
| type | number [|% |previous |difference |
+ + + + + +
| code |4539 |55.87 |NC |NC

Fom e Fom———— Fo———— Fomm Fom e ——— +
|docstring 1122 [13.81 |NC |NC
o +om———— +-———— fomm = Fomm +
| comment | 750 19.23 |NC |NC
Fomm Fom———— Fo———— Fomm Fom e ——— +
|empty [1713 [21.09 |NC |NC |
Fomm Fom———— Fo———— Fomm Fomm +
Duplication

o - +o——— fom— Fom +

\ | now |previous |difference |

ROC Ref. SOLO-GS-RP-2460-CNES

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & /%

+ + + + +
Inb duplicated lines [121 |0 |+121.00

o - +-——— Fomm o +
|percent duplicated lines [1.536 [0.000 |+1.54 |
o - +-——— Fomm o +

o o o o +

| type |number |previous |difference |

+ + + + +

| convention [833 | 8 |+825.00

o ———— +—————— o o +
|refactor |281 |0 |+281.00
e —— +—————— o t——————— +
|warning 167 |0 |+167.00
e —— +—————— o t——————— +
|error [291 |0 |+291.00

o ———— +—————— o o +
Messages

e to—m +
|Imessage id |occurrences |
+ + +
Imissing-docstring | 432
e o ——— +
| import-error |216 \
e Fo—m e ———— +
| line-too-long | 205 |
e o ——— +
| too-few-public-methods | 187

e Fo—m e ———— +
|invalid-name [141 |
e Fo—m e ———— +
| no-member |65
e o ——— +
|no-self-use |62

e Fo—m e ———— +
|unused-argument |57
- - +
|bad-continuation |35

e Fo—m - +
|lattribute-defined-outside-init |27 |
e Fo—m - +
|protected-access |16
- - +
| unused-import |14

R et et Fom - +

|unused-variable [13

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | " /%

B i it PP o ——— +
| too-many-arguments |10
o - +
| too-many-locals | 9
o - +
|redefined-builtin | 9
B i it PP o ——— +
|duplicate-code |9 \
o - +
|ungrouped-imports | 7
B i it PP o ——— +
| fixme | 7 |
e to—m +
|wildcard-import | 6
e to—m +
|undefined-variable |5
B it it PP o +
|[trailing-newlines | 4
e to—m +
| logging-not-lazy | 4
B it it PP o +
|broad-except | 4 |
e to—m +
| superfluous-parens |3
e to—m +
| redefined-variable-type | 3
B it it PP o +
|no-name-in-module |3
e to—m +
| lost-exception | 3
e o ——— +
|anomalous-backslash-in-string |3
e Fo— - +
|wrong-import-order | 2
e Fo—m e ———— +
| dangerous-default-value | 2
e o ——— +
|bad-whitespace | 2
Rt T e Fo—m e ———— +
|bad-indentation | 2
e o ——— +
|lunidiomatic-typecheck |1
e Fo—m e ———— +
|simplifiable-if-statement |1
e Fo—m e ———— +
|not-callable |1 \
- - +
|consider-iterating-dictionary |1
e Fo—m - +
|bad-super-call |1

ROC Ref.) SOLO-GS-RP-2460-CNES
MUSIC Software Dater . 26/04/2019
Quality Analysis report | & /%

12. Annex 5: sonarQube dashboard

Source code analyzed from

ssues Secwily Reports = Measures Code Activity Administration -

e Fallad Aboul This Praject

W Notags -

Coverage

61 8 |'1 ')r ..s.f.::n_f.

4.8k

air

e
Vulnerabilities | & ew code

e previous version

Projoct Activity

3 09 0@ 00 e

& Bugs @ vurneraiiities & New Bugs B MNew Vulnerabilities

|le: Use "CNES_PYTHON_DY

7d 0 6 6 9 O Qo 0 » ytho NG srlzlli;': -::Iill'.l?Pylh on)

Red

Diebt @& Code Smells Mew Debl & Now Code Smells

i

Cuallty Gate
O-OO/U —_— setaull) QualltyGates_RNG_DB_v0.1

Coverage Coverage on New Code Qualily Profiles

1) CNES_PYTHOMN D

