

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
1/52

ROC MUsIC Software Quality Analysis report

Date: 26/04/2019 Issue: 1.0

Reference: SOLO-GS-RP-2460-CNES

Custodian: Dominique Bagot (PAQA CNES)

Prepared by: Date: Signature:
Dominique Bagot Software Quality Engineer
Contributors Date:

Approved: Date: Signature:
Desi Raulin Ground Segment

Development Manager

Issue Date Page Description Of Change Comment

1.0 26/04/2019 all First version Report delivered to
Lesia laboratory

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
2/52

1. Table of contents
2. Purpose and scope ... 4

2.1 Purpose ... 4

2.2 Scope of the analysis .. 5

2.3 Applicable documents .. 6

2.4 Reference documents ... 6

General links .. 6

Project .. 6

3. Information on the project and product analysed ... 7

3.1.1 Context of the analysis: periodic software quality analysis ... 7

3.1.2 Development team and stakeholders .. 7

3.1.3 ROC software products overview .. 7

3.1.4 The MCS User Interfaces (MUSIC) ... 10

4. tools and source code inputs .. 11

4.1 Environnent ... 11

4.2 Code analysed .. 11

4.3 Code top-level structure .. 12

4.4 Product size and category ... 17

5. Software engineering compliance .. 18

5.1 Configuration management (GitLab) .. 18

5.2 Product documentation ... 18

5.3 Generation ...19

6. Maintainability .. 20

6.1 Dependencies ... 21

6.2 Design analysis ... 22

6.3 Duplications .. 22

6.4 Sizes and complexities ... 24

6.4.1 File and class sizes .. 24

6.4.2 Class contents ... 26

6.4.3 Class complexities .. 27

6.4.4 Method sizes ... 27

6.4.5 Method complexities .. 28

6.5 Headers and comments in the source code .. 28

6.5.1 Metrics on API headers .. 28

6.5.2 Global metrics on comments ... 29

7. Reliability .. 30

7.1 Critical Issues ... 30

7.2 Major issues .. 30

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
3/52

8. Inspection of pieces of code .. 32

8.1 Introduction .. 32

8.2 Dependancies.. 32

8.3 Headers ... 33

8.4 Lines of comments ... 34

8.5 Global remarks (on the whole file): ... 35

9. Conclusions and recommendations ... 35

9.1 Top-priority .. 36

9.2 Other recommendations .. 36

10. Annex 1: metrics definition .. 37

10.1 sonarQube ... 37

10.2 Understand ... 38

10.3 Annex 3: Dependency graphs by main folder ... 40

10.4 Graphs with Python and Javascript languages ... 40

10.1 Graphs with Python language only.. 42

10.1.1 backend/faust ... 43

10.1.2 backend/tv_plot,tv,plots_static .. 44

10.1.3 backend/accounts, lib, figaro .. 45

10.1.4 backend/music ... 46

10.2 Focus on a dependancy (example) .. 47

11. Annex 4 : pylint report ... 49

12. Annex 5: sonarQube dashboard .. 52

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
4/52

2. Purpose and scope

2.1 Purpose

The purpose of this document is to describe the results obtained in the software quality analysis
and code inspection of the ROC MUsIC software product.

First objective is to HELP the development team.
Please contribute to improve this report.

Any comments, ideas are welcome!
Other objectives are:

 Deliver a Quality status on the code;

 Communicate it to the code authors, the whole development team and managers;

 Possibly set-up action plan for improvement.

For each of the measurements, we cover the following items:

 What is measured and why;

 The measurement tool(s) used;

 The measurement results;

 An analysis of the results and, potentially, actions to be carried out.

The conclusions are derived from good practices and should be taken as a guide instead of a
prescription.

This analysis has been done without knowledge (science, SW implementation…) on this project.

Please do not hesitate to mention any error or misunderstanding.

In the remainder of this report:

Metrics and their rationale are given in italic blue.
 For each metric, recommended value and applicable vales (from [AD6]) are systematically reminded.

Proposals for actions are provided in an orange box.

When a metric is over the applicable value, a red font is used (otherwise the
orange font).

The list of the metrics used in this document, with their definitions and thresholds, are in the
annex §10 page 37.

The values of these metrics collected by the tools Understand and sonarQube are attached in this

file:

MUsIC_Understand

_metrics.xlsx
Other definitions and more details are also in this document.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
5/52

This is the first quality SW analysis report on ROC ground software.

A second report (planned on the RSSVC4 milestine, septembre-octobre 2019 TBC), should

be produced on more matured source code and covering more functional features (and
requirements).

2.2 Scope of the analysis

In this first analysis:

- Data models are not part of this (software) analysis

- The test folders and test files are not taken into account for this

analysis

- Only Python files have been selected (*.py) (no analysis done on

javascript files)

- the recommandations in this document do not apply on files generated

by Django.

The product is introduced in §3 page 7.

This anaysis has been done on the main parts of MusIC:

- TV
- Figaro
- Faust

Opera and SISSI will be analyzed later: the specifications of Opera have
to be refined an the SISSI product will be validated on the flight
acceptance phase.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
6/52

2.3 Applicable documents

AD Title / Author
Document
Reference

Issue

1 ROC Software Assurance /Product Assurance Plan
(SPAP)

ROC-GEN-MGT-QAD00033-LES 1.2

2 Quality Assurance Specification for Software
Development with Laboratories

DNO-DA-AQ-2017-0016646 1.0

2.4 Reference documents

General links

RD Description Adress

1 sonarQube tool: Metrics definitions https://docs.sonarqube.org/display/SONAR/Metric+Definitions

2 Understand tool: Metrics & definitions https://scitools.com/support/metrics_list?

3
Clean code - A handbook of agile software
craftsmanship R. C.Martin

https://sites.google.com/site/unclebobconsultingllc/books

4 Refactoring techniques https://refactoring.guru/refactoring

5 Refactoring – Coupling and Cohesion
M. Fowler. Refactoring. Addison-Wesley, 1999
https://martinfowler.com/books/refactoring.html

6 Metrics definitions https://www.ndepend.com/docs/code-metrics

7
How to save on software maintenance
costs

http://asq.org/public/wqm/how-to-save-on-software-
maintenance-costs.pdf

8 Python and Django coverage

o https://django-testing-
docs.readthedocs.io/en/latest/coverage.html

o https://www.bedjango.com/blog/package-week-
coverage-django/

o https://coverage.readthedocs.io/en/coverage-
4.4.2/config.html

9
licences used by the French
administrations

https://www.data.gouv.fr/fr/licences

10 PEP 8 https://www.python.org/dev/peps/pep-0008/

Project

RD Title / Author
Document
Reference

Issue

 11 ROC Glossary of terms ROC-GEN-OTHNTT-00045-LES 1.0

12 ROC Engineering Guidelines ROC-GEN-SYSNTT-00008-LE 1.1

13 ROC Project Management Plan ROC-GEN-MGT-PLN-00013-LES 1.4

14 ROC Software Development Plan PLN-00015-LES 2.1

15 ROC Concept and Impelement Requirements
Document (CIRD)

ROC-GEN-SYS-PLN00002-LES 1.4

16 ROC Software System Design Document (RSSDD) ROC-GEN-SYS-SPC00036-
LES/00

1.0

17 ROC Software System Specification (RSSS) ROC-GEN-SYS-SPC00026-LES 1.0

18 ROC Software System User Manual ROC-GEN-SYS-SUM-XXXX-LES N/A

https://docs.sonarqube.org/display/SONAR/Metric+Definitions
https://scitools.com/support/metrics_list?
https://sites.google.com/site/unclebobconsultingllc/books
https://refactoring.guru/refactoring
https://martinfowler.com/books/refactoring.html
https://www.ndepend.com/docs/code-metrics
http://asq.org/public/wqm/how-to-save-on-software-maintenance-costs.pdf
http://asq.org/public/wqm/how-to-save-on-software-maintenance-costs.pdf

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
7/52

3. Information on the project and product analysed

3.1.1 Context of the analysis: periodic software quality analysis

This analysis has been done within the frame of periodic software quality analyses, at least one
per year, or one per minor version number (m in number version M.m.p).

3.1.2 Development team and stakeholders

LESIA is in charge of the global project management, and of operations planning. This includes
the definition of interfaces, the writing of the software tools, and their usage.

The table below lists the main stakeholders of the product analysed:

ROC Project manager Xavier Bonnin

RPW Project Investigator (PI) Milan Maksimovic

ROC Lead software developer Sonny Lion

ROC Product PAQA lead Stéphane Papais

More details can be found in the ROC Project Management Plan [RD 13] and ROC Software
Development Plan [RD 14].

3.1.3 ROC software products overview

The ROC Software System (RSS) definition gathers all of the engineering systems required to reach

the ROC functionalities defined in the CIRD [RD 15]. The specification requirements of the RSS can

be read in the “ROC Software System Specification” document (RSSS) [RD17], and the RSS design in

the “ROC Software System Design Document” (RSSDD) [RD16].

Figure 1: ROC software System product tree [RD 14]

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
8/52

Figure 2: RSS overall design (MUsIC highlighted in red)

The ROADS are six main software tools, regrouped into the MCS and DPS sub-systems. One of
them is the MCS User Interface (MUSIC).

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
9/52

Figure 3: ROC Operations And Data System (ROADS) software products [RD 14]

MUSIC is a Web tool allowing ROC operators to view the mission planning, prepare and submit
the operations requests, but also monitoring downlink/uplink TM/TC data flows and analysing
incoming RPW data.

 The ROC Software Development Plan [RD 14] is clear and describes

nearly all the software components.

This (first) analyses one of the ROC software tools. The next one
should embrace all of them.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
10/52

3.1.4 The MCS User Interfaces (MUSIC)

The MCS USer InterfaCes (MUSIC) is a Web interface, dedicated to the preparation of the
instrument operations and to the instrument data monitoring.

The MUSIC frontend is composed of five tools [RD 14]:

 The RPW TM/TC Viewer (TV), used by ROC operators to promptly visualize the instrument
status, TM/TC history and statistics, as well as the HK/science data.

 The RPW Flight Operation Procedure Editor (FIGARO), to create the RPW flight procedures
(RFP) in the expected format.

 The RPW Flight Operation Request Editor (FAUST), to prepare and submit to the SOC/MOC
the Instrument Operations Requests (IOR) in the expected format, and in accordance with
the mission planning constraints.

 The RPW Operation Planning Interface (Opera), to visualize the mission and instrument
planning and constraints (i.e., allocation resources) and prepare the operations timeline.

 The SBM Interactive Selection System Interface (SISSI), to manage and select the
SBM1/SBM2 event data to downlink.

The MUSIC backend is composed of the following components [RD 14]:

 MUSIC common backend; the main backend of the MUSIC Web tool, which relies on the
Django framework architecture.

 MUSIC_IDB; a module providing a database model to the other MUSIC backend
components, in order to access the RPW instrument Database (IDB) in a standard way.

 The IDB used by the ROADS is stored in the ROC MDB. The database model is the same
than for MUSIC (i.e., Django database model).

 Instrument TM RAte Calculator (TRAC); a module dedicated to the TM data rate
computation for a given instrument state. Especially, this module serves to compare the
instrument states against the Telemetry Corridors (TMC) provided by the SOC.

 Instrument POwer Consumption Analyser (POCA); a module to check the instrument power
consumption.

 INstrument Commanding Automaton (INCA); a module in charge of managing the
instrument state model (ISM) of MUSIC.

The architecture of the MUSIC backend also has an interface with the MDB to retrieve/store
related data and meta-data.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
11/52

4. tools and source code inputs

4.1 Environnent

The following table shows the environment and tools used for the analysis of the code.

Name Version

Understand 3.1 (2014)

pylint 1.6.5

sonarQube 7.4 (with the CNES applicable configuration)

The SW quality tools below are not in the project framework (including sonarQube). Their
results are complementary to sonarQube results.

 Understand [2] has been used to analyse the design (dependencies between files)
and to get detailed metrics (down to the method level).

The definitions of the metrics of both sonarQube and Understand are provided in annex §10
page 37.

4.2 Code analysed

The analysis has been carried out over the source code in the GitLab repository. The following
table shows the repository information at the time of the analysis.

Location in CM tool
https://gitlab.obspm.fr/ROC/MUsIC/-
/archive/develop/MUsIC-develop.zip

Location in sonarQube N/A

Release major changes

under current development phase (no official release)

Note: a Software Configuration File (or Software Release Note)
[AD 2] is expected for the next official delivery (RSSVC4
milestone)

This analysis is mainly based on metrics. The advantage is to cover large number of lines of code.
In order to be close to the “real” source code, a (too) short analysis has been done on a piece of
code: see section §8 Inspection of pieces of code page 32.

https://scitools.com/features/
https://gitlab.obspm.fr/ROC/MUsIC/-/archive/develop/MUsIC-develop.zip
https://gitlab.obspm.fr/ROC/MUsIC/-/archive/develop/MUsIC-develop.zip

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
12/52

4.3 Code top-level structure

The ROC Software System Design [RD 2] summarizes in §5.1 the main components and data
composing the system:

Figure 4: MUsIC architecture overview

Backend software:

It is composed of these folders:

The “dynamic” of the inernal parts is represneted as below:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
13/52

FrontEnd software:

The frontend is based on Reactjs (javascript library) and Redux (for organizing data).
It is composed of these folders:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
14/52

Full contents of the analyzed folders:

Here are the elements analyzed in this report:

The figure below is a graphical representation of the MUsIC source code (Python source code
only):

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
15/52

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
16/52

Figure 5: Treemap view of the MUsIC source code (Python only)
(see legend above)

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
17/52

 The ROC Software System Design Document [RD 16] is clear and

describes nearly all the software components.

An effort could be done on:

- Sections with TBC/TBD, particularly adding static diagrams (eg
class) and dynamic diagrams (eg sequential).

- the “left to be done”, i.e. add more details or quantitative values on
the work to be done.

4.4 Product size and category

Some key values give a good indication on the effort to be invested to maintain the project. In
the frame of science source code, where projects range from around 10 to 105 lines of code, let us
introduce the following categories:

• Small project: Less than 1,000 lines of code;
• Medium project: 1,000 to 10,000 lines of code;
• Large project: More than 10,000 lines of code.

In any case, the famous “rule of 30” is a good guideline to ensure that the maintenance will be
reasonable. In terms of metrics, this rule states that:

a) Methods should not have more than 30 code lines (not blank counting lines and
comments).

b) A class should contain less than 30 methods, resulting in up to 900 lines of code.
c) A package shouldn’t contain more than 30 classes, thus comprising up to 27,000

code lines.
The table below is extracted from Understand metrics (see annex §10.2 page 38):

Table 1: Sizing metrics (understand)

Item Count Average sub-element count
Python Modules (files) 115
Classes 276 ~ 2,4 classes per module
Methods 280 ~ 1 method per class
Lines of code 5138 18 lines of code per method

The project is medium-sized i.e. categorized as a medium project.

The breakdown in directories, files, classes, methods and statements seems
globally reasonable at this level of details, with respect to the rule of 30.

The high value of count of classes (and low value of count of methods per class) is due to the
Django “usage”.
For information 8 python files (.py) contain the header “Generated by Django”.
This is only an overview, as introduction: the sections below will provide some details on these
values.

http://swreflections.blogspot.fr/2012/12/rule-of-30-when-is-method-class-or.html

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
18/52

5. Software engineering compliance

This section provides a status on the compliance of the source code analysed with standard
software engineering rules.

5.1 Configuration management (GitLab)

Table 2: Checks on Configuration Management

Checks Results / Comments
The project should be hosted on the project GitLab
repository to benefit from continuous integration
and deployment;

Yes: GitLab fully used

Master and develop branches exist (or equivalent).

Yes: branches exist and used
Use tags for official deliveries

Data management: there are no big data files managed
under CM

OK. None file over 1 Mo.

5.2 Product documentation

Each product version should have developer and user documentation, in order to ease its
understanding and future maintenance.

Table 3: Checks on Documentation

Checks: the product is… Results / Comments
is described in a specification or/and design
document

Yes document ROC Software System Design Document
(RSSDD) [RD 16]

has a Software Configuration File (SCF) or a
Software Release Note (SRN)

NOK, SRN to be initialized

There is (updated) information in the gitlab website
(changelog)

has a Software User Manual (SUM) NOK, , SUM to be initialized [RD 18]

There is (updated) information in the gitlab website

has a managed list of issues (Software Problem
Reports)

OK (in Gitlab)

 To be discussed with the overall team: Initialize or not these

documents:
o SRN (Software Release Note)
o and SUM (Software User Manual)

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
19/52

5.3 Generation

The product should be generated and installed easily and terminated with success.

Table 4: Checks on generation tasks

Objective: check the execution of these jenkins
executions phases....

Results / Comments

binaries generation (build step) OK
Documentation in the GitLab site clear and complete

Note: prerequisistes to detailed

tests execution (After build step) NOK
quality tools execution (Quality Analysis step) Partially OK (no coverage performed or documented)

The figure below is a snapshot of the web application.

 Set-up unit tests in order to run them with a unique command.

 Then, ensure that the structural coverage is measured in

sonarQube dashboard.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
20/52

6. Maintainability

Maintainable software allows to quickly and easily:

 Fix a bug, without introducing a new bug

 Add new features, without introducing bugs

 Improve usability

 Increase performance

 Make a fix that prevents a bug from occurring in future

 Make changes to support new environments, operating systems or tools

 Bring new developers on board the project

The sub-sections intend to check maintainability characteristics from metrics values.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
21/52

6.1 Dependencies

The goals of this verification are the following:
- Help the reader to understand the “dynamic” organization: what calls what?
- Identify packages which depend on many others,
- List packages with cyclic dependencies (package A calls B, which itself calls A).

The tool Understand V3.1 has been used in this section for its results on the dependencies
between files: calls, includes/imports, inherits, implements, inits, overrides, modifies, sets,
throws, uses…

The top-level level dependency graph is the following (divided in 2 parts, for convenience):

Figure 6: Top-level dependency graph

The tool highlighted cyclic dependencies (see the red arrows in the graph above) between:

 components
 modules (see example of dependancy in §10.3 page 40).

The cyclic dependencies between these methods have not been identified in this report (lack of
time).

 Possibly identify the cyclic dependencies, between:

o Methods (critical)
o Modules (major)

 Redesign the classes if necessary (a lot of books and internet sites offer

recipes to fix the cyclic dependencies)

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
22/52

6.2 Design analysis

Coupling and cohesion are both indications of the quality of the design.
They have not been analysed in this report (no tool available for Python code).
A quick look on the inheritance tree has been performed.

There are 242 classes : 58 % of the classes have a inheritance tree level (or depth) at 1,
level 2: 12%, level 3: 4% and level 4: 25%.

Comments:

 When possible, use the Object Programming Concepts (here use inheritance)

 Stick nevertheless to the “good” practices in term of architecture: inheritance has to be
implemented only if the subclass is an extension of the superclass, not in order to
combine common code (e.g. A new subclass should not violate the Liskov substitution
principle [RD 4], [RD 5]).

6.3 Duplications

Code duplication is a very important measurement from the maintenance point of view.
Indeed, the effort to modify duplicated code might become prohibitive if one has to ensure that
duplicated lines should remain the same. Duplication rate should therefore be exactly
0%.

sonarQube is able to detect the number of duplicated blocks of lines (see definition in §10.1 page
37).

https://docs.sonarqube.org/display/SONAR/Metric+Definitions

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
23/52

Example of duplication block found:

This block is similar as this one, in the same file:

We can consider that this status does not present a risk for the maintenance, considering the Django specificities
and “current usage” by developers.

 The count of duplicated lines is not important and considered as

acceptable

Analyse nevertheless each duplicated block of code and, if the
duplication is considered by the team as a risk for the maintenance,
try to reduce.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
24/52

6.4 Sizes and complexities

6.4.1 File and class sizes

As stated in §4.4 page 17, a class should contain less than 30 methods, resulting in up to 1000
lines of code.

Another close and interesting metric is the number of classes in a source file.

Placing each class in an individual file promotes reuse by making classes easier to see when
browsing the source code: a reasonable value is consequently 1: a source file should contain
only one class.

The figure below shows the distribution of the number of source lines of code per source code file.

Figure 7: Number of source lines of code par class (Understand)

The table below shows the largest files. No one overpassess the recommended count of lines of
code (1000 lines).

Kind Name CountDeclClass CountLine CountLineCode

File MUsIC\backend\faust\renderers.py 5 397 267

File MUsIC\backend\faust\parsers.py 4 403 264

File MUsIC\backend\faust\views.py 6 398 256

File MUsIC\backend\faust\management\
commands\generate_ior.py

2 340 217

File MUsIC\backend\figaro\parsers.py 2 290 204

File MUsIC\backend\figaro\formal_validation_serializers.py 13 266 180

File MUsIC\backend\figaro\serializers\statements.py 14 268 170

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
25/52

The figure below show the distribution of the count of classes by file. For example, 44 files do have
any class. 34 files have one class, 7 files have 3 classes etc.

The table below shows the files having the most count of classes. As shown above, a lot of files (37
classes ie 32% of the python files analyzed) have more than the expected count of classes, i.e 1 class
only.

Name CountDeclClass CountLine CountLineCode

MUsIC\backend\faust\serializers.py 23 238 162

MUsIC\backend\faust\models.py 16 166 122

MUsIC\backend\figaro\serializers\statements.py 14 268 170

MUsIC\backend\figaro\formal_validation_serializers.py 13 266 180

MUsIC\backend\figaro\models\statements.py 11 97 67

MUsIC\backend\figaro\admin.py 10 53 32

As stated above, this status is not considered as a risk because due to the Django specificities.
There are maybe possibilities of improvement (generic declarations and initializations…) but we
leave here the development team to choose their best way to manage their database.
Let’s focus on the first file : backend/faust/serializer.py. The snapshot below can be considered
as a typical way to serialize Django data:

(Django guide: “Serializers allow complex data such as querysets and model instances to be
converted to native Python datatypes that can then be easily rendered into JSON, XML or other
content types.”)

https://www.django-rest-framework.org/api-guide/serializers/

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
26/52

 In summary the distribution of classes in files, due to Django here, seems acceptable.

6.4.2 Class contents

As stated above, the rule of 30 holds for classes, which means that there should be no more than
30 member variables and no more than 30 methods in a class.

The histogram of variables and methods per class built from Understand's outputs is following:

Figure 8: Number of variables and methods par class

- 18 classes have 3 variables

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
27/52

- 56 classes have 2 methods

The results are fully compatible with the rule of 30:

- All the classes have less than 30 methods
- All the methods have less than 30 instance variables

A large number of classes show “well-balanced” classes in terms on contents and none class
exceeds the limit number of methods or variables (Note: the threshold of 30 is very high: it is
recommended in Clean Code [RD 3] to not exceed 14 methods).
The table below shows these values and the Maximum cyclomatic complexity of all nested
functions or methods (per class).

6.4.3 Class complexities

The complexity of a class or method may be measured by different means. The sections below are
based on the simplest metrics: lines of Code and cyclomatic Number.

Figure 9: Class complexities

The figures above show that all most of the classes have an average cyclomatic value compliant
with the max expected (20). and none MaxCyclomatic number is beyond the this recommended
value.

6.4.4 Method sizes

As stated in §4.4 page 17, methods should not have more than 30 code lines.
The max mandatory value is 100.

None method overpasses the max value, i.e. has a count of lines of code less than 100.

https://en.wikipedia.org/wiki/Cyclomatic_complexity

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
28/52

6.4.5 Method complexities

Functions with too high complexity are error-prone. Functions should be as simple as possible
in order to ensure smooth testing and maintenance. To this end, two metrics are evaluated:

 The cyclomatic complexity is the number of decision points ("while", "for",
“foreach”,
“continue”, "if","case", "goto", “try” and “catch”…) plus one;
It should be as low as possible, and certainly not higher than 10.

 The nesting level is the number of nested blocks (conditions and loops); It is 0 or 1
in ideal cases, and should definitely not be higher than 5.

When complexity is too high, a simple solution is to split the method in submethods.

None method overpasses the max value, i.e. has a complexity higher than 25. In addtion the nesting level is always less than 5. Or
egual to 5.

6.5 Headers and comments in the source code

6.5.1 Metrics on API headers

Documenting the API of the project inside the source code is of utmost importance because this
is generally the most up-to-date documentation. Specifically, public items should absolutely be
documented.
Check the sonarQube metric “Density of public documented API”, which threshold expected
value is 100%.

Sonar reports (see §11 page 49) show that …the tool has not been able to collect metrics on API
items (type: file/class/method,…).

Another tool has been used: pylint, which output on docstrings is following:

About 13% of the source code has docstrings and about 9 % has comments.

This quick and straight analyse show an important lack of commenting in the code, on public
methods.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
29/52

In conclusion, we consider globally that the API headers are missing in the global
source code.

 Major recommendation: add docstrings on the public methods.
 Deploy the expected headers to the whole code (files, classes, methods).

 Be compliant with the Python docstrings format in the Coding Standards [RD 10],

i.e. Use NumPy Style for Python Docstrings

6.5.2 Global metrics on comments

Density of comment lines is a degree of commenting within the source code. It measures the
care taken by programmers to make the source code and algorithms understandable.
Poorly commented code makes the maintenance activities an extremely expensive. Applicable
minimum is 30% in the Coding Standards [AD 6].

Important note: this metric has to be balanced with the metric Density of public documented
API. It is reasonable to get a low density of comment lines under the expected value in (small)
methods which header is complete.

The average comment density measured by pylint is around 9 % (see above).

The figures below illustrate this statement (e.g. 205 methods have 0 or 1 line of comment)

Figure 10: distribution of comment density

 As stated above, put the effort on the headers (almost at method level). When done,

add comments if necessary.

https://euclid.roe.ac.uk/projects/coding-standards/wiki/User_Cod_Std-pythonstandard-v1-1#Use-NumPy-Style-for-Python-Docstrings

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
30/52

7. Reliability

Some issues in the code might prevent it to run smoothly (e.g., memory leaks). They should
be solved.

There are only 9 critical issues and 618 major issues reported by sonarQube.
The cost of accumulating technical debt is around 7 days .

7.1 Critical Issues

These issues are seen as critical by Pylint and current CNES rule profile file:

 recommandation on style: possibly re-arrange the oder of the import operations

7.2 Major issues

These issues are seen as major by Pylint and current CNES rule profile file:

We consider in this first analysis that there are no bugs that could alter the realibility.

We strongly recommend nevertheless to treat these messages, having an impact on the
maintenance cost.

Reminder: these recommandations do not apply on files generated by Django. The count of
messages (by issue) have been reminded par parenthesis below:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
31/52

1. Issue “Add a docstring to …” (316) : see recommandation above

2. Issue “The line contains … characters which is greater than 100 authorized.” (193) : use the
continuation line recommandations in PEP8

3. Issue “more comment lines need to be written to reach the minimum threshold of 20.0%
comment density.” (60) : add comment in targeted methods

4. Issue “This function has 2 returns or yields, which is more than the 1 allowed” (27) : factorize
“Return” statement in targeted methods

5. Issue “Remove this commented out code.” (12) : Once the source code will be ready for
production, delete the commented out code or replace them by “human” comment (and not
statements)

6. Issue “Undefined variable ‘…’” (5): It seems that this is a false error message: to investigated
and possibly fixed.

7. Issue “remove the ‘\’ …” (2) : a pattern is used in the targeted methods: no fix recommended.

8. Issue “rename function … to match the regular expression”: follow the naming rule.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
32/52

8. Inspection of pieces of code

In order to analyse (quickly) a portion of code, let’s take an example with the file
MusIC/backend/faust/views.py

8.1 Introduction

8.2 Dependancies

All he possible links around the file are represented here:

The file contains 6 classes, derived from APIView, ModelViewSet and ListDestroyModelMixin:

Name CountLine CountLineCode

faust.views.EfecsUploadView 26 16

faust.views.MtpInfoViewSet 6 6

faust.views.ScenarioSeqViewSet 45 26

faust.views.ScenarioViewSet 243 169

faust.views.SeqFpViewSet 6 6

faust.views.StpInfoViewSet 6 6

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
33/52

8.3 Headers

The file header is not documented and does not include Copyrights . See the link [RD 9]:
licences used by the French administrations.

There is a (short) description of the class and none API description in all the public methods:

When a method has parameters, there are no comments on them (type and description):

The reviewer might have difficulties to distinguish/identify the type of the parameters. It seems clear
that priority has to be done on adding headers on methods, like done in numpy math library:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
34/52

8.4 Lines of comments

There is only a few comments in this file. As stated above, it seems that 9% of the source code
has comments.

This “numeric” statement should nevertheless been mitigated because the source
code is generally very clear and easy to understand (i.e. line by line in a method).

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
35/52

8.5 Global remarks (on the whole file):

- Class documentation: more information on this class could be useful: prerequisites, limitations,
TODO…

- The code is easy to read, i.e. do not have “technical” python lines difficult to understand.

The difficulty is to disentangle the entities used and also the level of tasks implemented.
…it is true that the “features” to be implemented are not easy to code: it’s not as “structured” as a
scientific algorithm, or pure IT topic (as code a linked chain).

- Methods: they are small (exept ScenarioViewSet) and easy to read.
o They are focused on a single task and globally well named.
o Unit-testing of these methods should be easy to set-up. If tests are easier to write for

independent methods, then split the big method up

- A lot of constructors and public methods do not have checks on the parameters validity

(see the Python 3.x, function annotations, variables checks with isinstance(obj, type),
issubclass(obj, class), hasattr.. or also Type Enforcement accept/returns decorators from
PythonDecoratorLibrary).

If the development team want to be strictly “pythonic”, fulfil then the headers with
doctrings and add unit tests with specific input parameters.

- There are not globally hard coded values

- Log: use Python libraries (avoid ‘print’)

- Exceptions: they are not used in this file et globally in the full code.

9. Conclusions and recommendations

This product is the result of an important work done and represents a critical added value for the
ROC project (source code, architecture, production environment, documentation…).

After analysis, we have the feeling that each line of the code is the result of both a global analysis
(the Specification and design documentation [RD 16] is clear) on the features to be implemented
and a response to concrete and “daily” challenges /tasks to implement.

Each line is thus written for an operational goal, contributing to the software performance.

We consider that a major action, even if it already started, has to be continued and even
strengthened:

The source code does not have risks for the realibility.
Continue to improve the maintainability.

This would greatly help future maintainers: recent studies show that some 40-60% of the
maintenance effort is devoted to …only understanding the source code [RD 8]

https://docs.python.org/3/library/typing.html
https://wiki.python.org/moin/PythonDecoratorLibrary

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
36/52

The surveys confirmed also that source code and comments (including headers in classes and
methods) are the most important artefacts for understanding a system to be maintained.

The following section lists conclusions and recommendations derived from the analysis
described in the remainder of the document.

As stated in the introduction of this report, these proposals for action are derived from
good practices and should be taken as a guide instead of a prescription.

The developers should feel free to implement or not the proposed changes.

9.1 Top-priority

1. An important effort should be put in providing more details in the public API
documentation: add headers (i.e; docstrings) in the source code, at least on the
classes and public methods. This is crucial for understanding the code. And continue
to improve it later.

2. Set-up unit tests in order to run them with a unique command (possibly using a
simple command)

3. Try to decrease the issues raised in sonarQube and possibly follow the
recommandations stated in §7 page 30)

4. Improve the sonarQube configuration: ensure that the structural coverage is
measured and reinforce python rules in SonarQube.

5. Avoid cyclic dependencies, at least at module and method level

9.2 Other recommendations

a. The ROC Software System Specification [RD 16] is clear and describes nearly all the
software components.

An effort could be done on the “left to be done”, i.e. add more details or quantitative
values on the work to be done (ex: add new column in table in §4.3 page 10 and add
details as “IORs generation: 40% left to be done…”)

b. A few files and classes are relatively important (lines of code, complexity): pay
attention not grow again these entities.

c. Initialize Software Release Note and Software User Manual documents (planned on

the RSSVC4 TBC)

d. The file headers is not documented and does not include Copyrights. See the link
[RD 9]: licences used by the French administrations

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
37/52

10. Annex 1: metrics definition

Refer to the Excel file joined for more details (« Metrics definitions » table).

10.1 sonarQube

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
38/52

10.2 Understand

The following metrics have been exported in the Excel file attached:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
39/52

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
40/52

10.3 Annex 3: Dependency graphs by main folder

The figures below are provided only for information. Please contact the reviewer for more details
(Such pictures could be added values in the Software Design Document).

10.4 Graphs with Python and Javascript languages

Webpack and Backend directories:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
41/52

FrontEnd directory :

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
42/52

10.1 Graphs with Python language only

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
43/52

10.1.1 backend/faust

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
44/52

10.1.2 backend/tv_plot,tv,plots_static

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
45/52

10.1.3 backend/accounts, lib, figaro

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
46/52

10.1.4 backend/music

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
47/52

10.2 Focus on a dependancy (example)

Let’s focus on one of these red lines, supposed to identify a mutual or cyclic dependancy:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
48/52

The detailed graphs show the input and ouput links:

This one shows only the cyclic links between MusIC/backend/faust and MusIC/backend/figaro:

MusIC/backend/figaro/renders.py import code from MusIC/backend/faust:

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
49/52

And MusIC/backend/faust/renderers.py import code from MusIC/backend/figaro:

11. Annex 4 : pylint report

Report

======

Raw metrics

+----------+-------+------+---------+-----------+

|type |number |% |previous |difference |

+==========+=======+======+=========+===========+

|code |4539 |55.87 |NC |NC |

+----------+-------+------+---------+-----------+

|docstring |1122 |13.81 |NC |NC |

+----------+-------+------+---------+-----------+

|comment |750 |9.23 |NC |NC |

+----------+-------+------+---------+-----------+

|empty |1713 |21.09 |NC |NC |

+----------+-------+------+---------+-----------+

Duplication

+-------------------------+------+---------+-----------+

| |now |previous |difference |

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
50/52

+=========================+======+=========+===========+

|nb duplicated lines |121 |0 |+121.00 |

+-------------------------+------+---------+-----------+

|percent duplicated lines |1.536 |0.000 |+1.54 |

+-------------------------+------+---------+-----------+

Messages by category

+-----------+-------+---------+-----------+

|type |number |previous |difference |

+===========+=======+=========+===========+

|convention |833 |8 |+825.00 |

+-----------+-------+---------+-----------+

|refactor |281 |0 |+281.00 |

+-----------+-------+---------+-----------+

|warning |167 |0 |+167.00 |

+-----------+-------+---------+-----------+

|error |291 |0 |+291.00 |

+-----------+-------+---------+-----------+

Messages

+-------------------------------+------------+

|message id |occurrences |

+===============================+============+

|missing-docstring |432 |

+-------------------------------+------------+

|import-error |216 |

+-------------------------------+------------+

|line-too-long |205 |

+-------------------------------+------------+

|too-few-public-methods |187 |

+-------------------------------+------------+

|invalid-name |141 |

+-------------------------------+------------+

|no-member |65 |

+-------------------------------+------------+

|no-self-use |62 |

+-------------------------------+------------+

|unused-argument |57 |

+-------------------------------+------------+

|bad-continuation |35 |

+-------------------------------+------------+

|attribute-defined-outside-init |27 |

+-------------------------------+------------+

|protected-access |16 |

+-------------------------------+------------+

|unused-import |14 |

+-------------------------------+------------+

|unused-variable |13 |

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
51/52

+-------------------------------+------------+

|too-many-arguments |10 |

+-------------------------------+------------+

|too-many-locals |9 |

+-------------------------------+------------+

|redefined-builtin |9 |

+-------------------------------+------------+

|duplicate-code |9 |

+-------------------------------+------------+

|ungrouped-imports |7 |

+-------------------------------+------------+

|fixme |7 |

+-------------------------------+------------+

|wildcard-import |6 |

+-------------------------------+------------+

|undefined-variable |5 |

+-------------------------------+------------+

|trailing-newlines |4 |

+-------------------------------+------------+

|logging-not-lazy |4 |

+-------------------------------+------------+

|broad-except |4 |

+-------------------------------+------------+

|superfluous-parens |3 |

+-------------------------------+------------+

|redefined-variable-type |3 |

+-------------------------------+------------+

|no-name-in-module |3 |

+-------------------------------+------------+

|lost-exception |3 |

+-------------------------------+------------+

|anomalous-backslash-in-string |3 |

+-------------------------------+------------+

|wrong-import-order |2 |

+-------------------------------+------------+

|dangerous-default-value |2 |

+-------------------------------+------------+

|bad-whitespace |2 |

+-------------------------------+------------+

|bad-indentation |2 |

+-------------------------------+------------+

|unidiomatic-typecheck |1 |

+-------------------------------+------------+

|simplifiable-if-statement |1 |

+-------------------------------+------------+

|not-callable |1 |

+-------------------------------+------------+

|consider-iterating-dictionary |1 |

+-------------------------------+------------+

|bad-super-call |1 |

+-------------------------------+------------+

.

ROC
MUsIC Software

Quality Analysis report

Ref.
Version:
Date:
Page:

SOLO-GS-RP-2460-CNES
1.0
26/04/2019
52/52

12. Annex 5: sonarQube dashboard

Source code analyzed from

