

- 1 / 54 -

SOLAR ORBITER

RPW Operation Centre

ROC Project Management Plan

ROC-GEN-MGT-PLN-00013-LES Iss.01, Rev.04

Prepared by:	Function:	Signature:	Date
Yvonne de Conchy Xavier Bonnin	RPW Ground Segment Project Manager		17/11/2017
Verified by:	Function:	Signature:	Date
Desi Raulin Stéphane Papais	RPW Ground Segment Development Support ROC Software Product Assurance Quality Manager		Dd/mm/yyyy
Approved by:	Function:	Signature:	Date
Milan Maksimovic	RPW PI		Dd/mm/yyyy
For application:	Function:	Signature:	Date
Name	Team Member #4		Dd/mm/yyyy

CLASSIFICATION

PUBLIC 🔀

RESTRICTED

CNRS-Observatoire de PARIS Section de MEUDON – LESIA 5, place Jules Janssen 92195 Meudon Cedex – France

- 2 / 54 -

Change Record

Issue	Rev.	Date	Authors	Modifications	
1	0	30/06/2016	X.Bonnin	First release	
1	0	08/10/2016	X.Bonnin	Update ROC eng. doctree	
1	2	15/11/2016	Y de Conchy	Update milestones	
				Modifications of Institutes responsabilities	
1	3	20/12/2016	X.Bonnin	Add SOV/SVT/LL in "Constraints of the project section" Update "ROC staff" and "Configuration" sections	
1	4	17/11/2017	X.Bonnin	 Update the Constraints section (project phases division and update of the information) Update configuration section (Gitlab and JIRA) Update meeting list Update ROC documentation tree Update engineering management section with Agile scrum and RCS development approach Update table 11 (personnel summary list) 	

- 3 / 54 -

Acronym List

Acronym	Definition	
AR	Acceptance Review	
CCSDS	Consultative Committee for Space Data	
	Systems	
CDF	Common Data Format	
CNES	Centre National d'Etudes Spatiales	
СР	Cruise Phase	
CUC	CCSDS Unsegmented time Code	
DA	Data Archive	
DAL	Data Access Layer	
DAS	DPU Application Software	
DIO	Direction Informatique de l'Observatoire	
DPM	Ground Segment Deputy Project Manager	
DPS	Data Processing System	
DPU	Digital Processing Unit	
EPD	Energetic Particle Detector	
ESA	European Space Agency	
ESAC	European Space Astronomy Centre	
ESOC	European Space Operation Centre	
GIGL	Groupe Informatique Générale du LESIA	
GSE	Ground Support Equipment	
GUI	Graphical User Interface	
HF	High Frequency	
HFR	High Frequency Receiver	
ICD	Interface Control Document	
ID	Identifier	
IT	Information Technology / Instrument Team	
LEOP	Launch and Early Operation Phase	
LESIA	Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique	
 I FR		
MCS	Monitoring and Control System	
	womening and control system	

MEB	Main Electronic Box	
MIP	Mission Implementation Plan	
МОС	Mission Operation Centre	
NECP	Near Earth Commissioning Phase	
NEOP	Near Earth Operation Phase	
NMP	Nominal Mission Phase	
РА	Pre-Amplifier	
PDR	Preliminary Design Review	
PM	Ground Segment Project Manager	
РМР	Project Management Plan	
QA/PA	Quality Assurance / Product Assurance	
RCS	RPW Calibration Software	
RGS	RPW Ground Segment	
RGTS	ROC Ground Test SGSE	
RLLP	RPW Low Latency Pipeline	
RMU	RPW Monitoring Unit	
ROC	RPW Operation Centre	
RODS	ROC Operation and Data System	
ROI	ROC Operation Interface	
ROT	RPW Operation Toolkit	
RPW	Radio and Plasma Waves instrument	
RSS	ROC Software System	
SBM	Selected Burst Mode	
SCM	Search Coil Magnetometer	
SDD	Software Design Document	
SGS	Science Ground Segment	
SGSE	Software Ground Support Equipment	
SOC	Science Operation Centre	
SolO	Solar Orbiter	
SRS	Software Requirement Specification	
SSS	Software System Specification	
TDS	Time Domain Sampler	
TNR	Thermal Noise Receiver	
TV	TM/TC Viewier	

- 5 / 54 -

Table of Contents

1.1 Scope of the Document 8 1.2 Applicable Documents 8 1.3 Reference Documents 8 1.4 About this document 9 1.4.1 Access policy 9 1.4.2 Terminology 9 2 Objectives and constraints of the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project 11 2.2.1 During the phase "D" of the Solar Orbiter mission 11 2.2.2 During the phase "E" of the Solar Orbiter mission 14 2.3 The Solar Orbiter mission operations implementation plan. 18 3.1 ROC project presentation 18 3.1 ROC function tree 18 3.1 ROC forduct tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC ground Support Equipment (ROC GSE) 22 4 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.3 Responsibilities 25 <t< th=""></t<>
1.2 Applicable Documents 8 1.3 Reference Documents 8 1.4 About this document 9 1.4.1 Access policy 9 1.4.2 Terminology 9 2 Objectives and constraints of the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project 11 2.2.1 During the phase "D" of the Solar Orbiter mission 14 2.2.3 Main phases of the ROC project 17 2.3 The Solar Orbiter mission operations implementation plan 18 3.1 ROC project presentation 18 3.1 ROC function tree 18 3.1 ROC foroduct tree 20 3.2.1 ROC Software System (RSS) 20 3.2.1 ROC cofound Support Equipment (ROC GSE) 22 4 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2 RPW ground segment organization 23 4.3 Responsibilities 25 4.3.1
1.3 Reference Documents
1.4 About this document 9 1.4.1 Access policy 9 1.4.2 Terminology 9 2 Objectives and constraints of the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project. 11 2.2 Constraints of the project. 11 2.2.2 During the phase "D" of the Solar Orbiter mission 14 2.2.3 Main phases of the ROC project. 17 2.3 The Solar Orbiter mission operations implementation plan. 18 3.1 ROC function tree 18 3.1 ROC founction tree 18 3.2 ROC project organization and responsibilities 20 3.2.1 ROC software System (RSS) 20 3.2.2 ROC foroid segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.2.1 ROC software and data validation responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.3 R
1.4.1 Access policy 9 1.4.2 Terminology 9 2 Objectives and constraints of the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project 11 2.2 Constraints of the project 11 2.2 During the phase "D" of the Solar Orbiter mission 11 2.2.2 During the phase "E" of the Solar Orbiter mission 14 2.3 Main phases of the ROC project 17 2.3 The Solar Orbiter mission operations implementation plan 18 3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC project organization and responsibilities 20 3.2.1 ROC software System (RSS) 20 3.2.2 ROC droud Segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.2.1 ROC software and data validation responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.3 RCC software and data validation responsibilities 26
2 Objectives and constraints of the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project. 11 2.2.1 During the phase "D" of the Solar Orbiter mission 11 2.2.2 During the phase "E" of the Solar Orbiter mission 14 2.3 Main phases of the ROC project 17 2.3 The Solar Orbiter mission operations implementation plan. 18 3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 Solar Orbiter ground segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.4 Repv calibration Software (RCS) specific responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 25 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 26 4.3.5 RPW science data p
2 Objectives and constraints or the project 11 2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project. 11 2.2.1 During the phase "D" of the Solar Orbiter mission 11 2.2.2 During the phase "E" of the Solar Orbiter mission 14 2.2.3 Main phases of the ROC project. 17 2.3 The Solar Orbiter mission operations implementation plan. 18 3 ROC project presentation 18 3.1 ROC function tree. 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 Solar Orbiter ground segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.2 Responsibilities 25 4.3 Responsibilities 25 <
2.1 The RPW ground segment objectives overview 11 2.2 Constraints of the project. 11 2.2.1 During the phase "D" of the Solar Orbiter mission 11 2.2.2 During the phase "E" of the Solar Orbiter mission 11 2.2.3 Main phases of the ROC project. 14 2.2.3 The Solar Orbiter mission operations implementation plan. 18 3 ROC project presentation 18 3.1 ROC function tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.1 Solar Orbiter ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW Calibration Software (RCS) specific responsibilities </th
2.2 Constraints of the project
2.2.1 During the phase "E" of the Solar Orbiter mission 14 2.2.2 During the phase "E" of the Solar Orbiter mission 14 2.2.3 Main phases of the ROC project 17 2.3 The Solar Orbiter mission operations implementation plan 18 3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW calibration Software (RCS) specific responsibilities 26 4.3.4 RPW calibration Software (RCS) specific responsibilities <
2.2.3 Main phases of the ROC project 17 2.3 The Solar Orbiter mission operations implementation plan 18 3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29
2.3 The Solar Orbiter mission operations implementation plan 18 3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software legistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
3 ROC project presentation 18 3.1 ROC function tree 18 3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 <
3.1 ROC function tree
3.2 ROC product tree 20 3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level. 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
3.2.1 ROC Software System (RSS) 20 3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation and archiving responsibilities during the Solar 26 4.3.5 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level. 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level. 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
3.2.2 ROC Ground Support Equipment (ROC GSE) 22 4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4 ROC project organization and responsibilities 23 4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.1 Solar Orbiter ground segment organization 23 4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.2 RPW ground segment organization 23 4.2.1 ROC staff 24 4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.2.1ROC staff244.3Responsibilities254.3.1Key personnel responsibilities254.3.2Institutes responsibilities254.3.3ROC software and data validation responsibilities254.3.4RPW Calibration Software (RCS) specific responsibilities264.3.5RPW science data production, validation and archiving responsibilities during the Solar274.3.6RPW science data production, validation and archiving responsibilities during the ground294.3.7ROC software logistics support responsibilities294.3.8Personnel responsibilities: summary list30
4.3 Responsibilities 25 4.3.1 Key personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.3.1 Rey personnel responsibilities 25 4.3.2 Institutes responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.3 ROC software and data validation responsibilities 25 4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.3.3ROC software and data validation responsibilities254.3.4RPW Calibration Software (RCS) specific responsibilities264.3.5RPW science data production, validation and archiving responsibilities during the Solar270rbiter mission274.3.6RPW science data production, validation and archiving responsibilities during the ground294.3.7ROC software logistics support responsibilities294.3.8Personnel responsibilities: summary list30
4.3.4 RPW Calibration Software (RCS) specific responsibilities 26 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar 27 0rbiter mission 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
4.3.5 RPW science data production, validation and archiving responsibilities during the Solar Orbiter mission 27 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level 29 4.3.7 ROC software logistics support responsibilities 29 4.3.8 Personnel responsibilities: summary list 30
 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level
calibrations at system level
4.3.7 ROC software logistics support responsibilities
5 Configuration, information and documentation management
5.1 Configuration management plan 36
5.1.1 Project management files and tools
5.1.2 Software development specific files and tools
5.1.1 Requirements traceability management
5.2 Information management plan
5.2.1 Regular meetings involving the ROC
5.3 Documentation management plan
5.3.1 ROC documentation organization
5.3.2 ROC document file naming convention
5.3.3 ROC project management main documentation tree

- 6 / 54	-
----------	---

	5.3.5	ROC requirement identification	
	5.3.6	ROC requirement structure	
	5.3.7	ROC documentation management system	
6	Cost	and schedule management	46
6.	1 Cos	st management	46
6.	2 Scł	edule management	46
7	Integ	Jrated logistic support	46
7.	1 Hai	dware and software logistic supports	46
7.	2 Pro	ject logistic supports	46
8	Risk	management	46
8.	1 Ris	k management at the project level	
8.	2 Ris	k management at the engineering level	
9	Quali	ty/Product assurance management	49
10	Eng	ineering management	50
10).1 R(C software development approach	50
	10.1.1	ROC software development Agile Scrum approach	50
	10.1.2	RPW Calibration Software (RCS) development approach	52
10).2 R(DC software validation approach	52
10).3 R(DC engineering conventions and rules	52
11	List	of TBC/TBD/TBWs	53
12	Dist	ribution list	54

- 7 / 54 -

List of Figures

Figure 1. Solar Orbiter mission phases.	15
Figure 2. RPW operations timeline.	16
Figure 3. RPW Ground Segment function tree.	
Figure 4. ROC Software System product tree	20
Figure 5. ROADS software product tree.	
Figure 6. ROC Ground Support Equipment (ROC GSE) related software products	23
Figure 7. ROC support teams.	24
Figure 8. ROC staff at the LESIA.	25
Figure 9. ROC project management main documentation tree	41
Figure 10. ROC Operations And Data System main documentation tree.	
Figure 11. ROC GSE main documentation tree	44
Figure 12. ROC software development sprint concept.	

List of Tables

Table 1 Terminology	10
Table 2 ROC involvement in the RPW engineering activities before the launch main milestones	12
Table 3. ROC involvement in the ESA engineering activities before the launch: main milestones.	14
Table 4. ROC main key points and reviews	14
Table 5. ROC project main phases	17
Table 6. ROC functions.	20
Table 7. ROC software customers versus suppliers	26
Table 8. RCS responsibilities.	27
Table 9. Science calibrated data validation leader.	28
Table 10. Logistics support to the ROC at LESIA and Paris Observatory	30
Table 11. Key personnel involved in the RPW Ground Segment activities.	36
Table 12. ROC regular meetings	40
Table 13. ROC documentation objects and types.	40
Table 14. ROC project management documentation.	42
Table 15. ROC Operations And Data System main documentation tree	43
Table 16. ROC GSE main documentations	45
Table 17. Types of risk at the ROC project level	48
Table 18. Identified types of risk at the ROC engineering level	49

- 8 / 54 -

1 GENERAL

1.1 Scope of the Document

This document is the project management plan (PMP) of the RPW Operation Centre (ROC), which drives the RPW Ground Segment (RGS) activities.

The PMP presents the main objectives and constraints of the project, and covers the following aspects [RD2]:

- Project organization
- Project breakdown structures
- Configuration, information and documentation management
- Cost and schedule management
- Integrated logistic support
- Risk management
- Product assurance management
- Engineering management

The PMP shall address a project management in agreement with the requirements defined in the ROC Concept and Implementation Requirements Document (CIRD) [AD1].

The ROC is located at the Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique (LESIA) in Meudon, France.

1.2 Applicable Documents

This document responds to the requirements of the documents listed in the following table:

Mark	Reference/Iss/Rev	Title of the document	Authors	Date
AD1	ROC-GEN-SYS- PLN-00002-LES/1/4	ROC Concept and Implementation Requirements Document (CIRD)	Y. de Conchy X. Bonnin	17/11/2017
AD2	ROC-GEN-OTH- NTT-00045-LES/1/0	ROC Project Glossary of terms	X.Bonnin	24/01/2017
AD3				

1.3 Reference Documents

This document is based on the documents listed in the following table:

Mark	Reference/Iss/Rev	Title of the document	Authors	Date
וחת	RPW-GEN-PLN-	RPW Operation Concept	M.Maksimovi	08/03/2012
KDI	00130-LES/1/0		с	
0.01	ECSS-M-ST-10C/3/1	Project planning and	ECSS	06/03/2009
KD2		implementation	consoritium	

- 9 / 54 -

RD3	ROC-GEN-SYS-	ROC Software Development	X.Bonnin	17/11/2017
KD5	PLN-00015-LES/2/1	Plan (SDP)		
	ROC-GEN-OTH-	Proposition Technique et	Y. de Conchy	18/10/2017
RD4	BDG-00010-LES/2/0	Financière pour le ROC –		
		Phase D et E1		
PD5	ROC-GEN-SYS-	ROC Engineering Guidelines	X.Bonnin	17/11/2017
KD5	NTT-00008-LES/1/3			
PD6	ROC-GEN-SYS-	ROC Engineering Guidelines	X.Bonnin	17/11/2017
KD0	NTT-00019-LES/2/0	for External Users		
DD7	SOL-ESC-PL-	Solar Orbiter Mission	I.Tanco	31/01/2013
KD/	00001/1/1	Implementation Plan (MIP)		
D D0	ROC-GEN-MGT-	ROC Software Product	S.Papais	07/11/2017
KD8	QAD-00033/1/1	Assurance Plan (SPAP)		
	2A- SOL-ESC-HO-	Instrument Command	I.Tanco	05/09/2016
D D O	05014/1/1	Workshop, ESOC :		
KD9		Commanding Interface and		
		Testing		
	SOL-SGS-0006-	Solar Orbiter Instrument	Nana Bach,	30/08/2017
DD10	TS/1/0	Teams – SOC Test	Chris Watson	
KD10		Specification		
DD11	LL-pipelines at SOC	LL-Pipelines@SOC	Chris Watson	06/07/2015
KD11	schedule.pptx	Proposed schedule		
DD12	ROC-TST-GSE-	POPPy framework User	Manuel	24/06/2016
KD12	SUM-00035-LES/1/1	Manual	Duarte	
	ROC-PRO-DAT-	RPW Data Products	Xavier	17/11/2017
RD13	NTT-00006-		Bonnin	
	LES/01/01			
RD14	SOL-ESC-IF-	Planning Interface Control	L. Michienzi	07/2015
	05010/1/2	Document		
RD15	SOL-SGS-ICD-	Solar Orbiter File-Transfer	E Salazar,	24/03/2017
	0009/1/0	SOC<-> Instrument Teams	C.Watson	
		ICD		
	SOL-SGS-PL-	Solar Orbiter Archive Plan	Pedro Osuna	01/09/2017
KD10	0009/2/0			

1.4 About this document

1.4.1 Access policy

This document is public and can be accessible without any restriction.

Any modification of the present document requires formal approval of the RPW Ground Segment Project Manager (PM) before publication.

This latter shall ensure that the present document is always up-to-date and in accordance with the current project requirements and status.

1.4.2 Terminology

Except the terms listed in the table below, the definitions provided in [AD2] are applicable in the present document.

Name	Definition
Post-launch phases	Phases of the Solar Orbiter planned after the launch (i.e., LEOP, NECP, CP, NMP)

Table 1. Terminology.

2 OBJECTIVES AND CONSTRAINTS OF THE PROJECT

2.1 The RPW ground segment objectives overview

The RPW ground segment expected activities are already detailed in the CIRD [AD1], nevertheless for convenience the main objectives are summarized below:

- Support the definition of the science operations.
- Provide to the Solar Orbiter Science Operations Centre (SOC), inputs for the definition and implementation of the science operation planning, data handling and archiving concepts.
- Supervise the preparation of the instrument operation timelines
- Support the definition and implementation of the Solar Orbiter scientific data archive, as part of the pre-launch tasks.
- Agree on a long-term science activity plan and define the scientific priorities of scientific goals.
- Monitor and analyze instrument state in support to the Solar Orbiter Mission Operation Centre (MOC). Especially, the MOC does not plan to analyze instrument science telemetry (TM).
- Optimize instrument performances
- Perform the selection of the Selected Burst Mode (SBM) event data to be downlinked
- Make available the necessary resources during Near Earth Commissioning Phase (NECP) for the installation of equipment at the MOC, to monitor the operations execution in near-real time and to support GO/NOGO decisions at predefined steps in the procedures
- Deliver calibrated and high level data, including relevant calibration products, to the Solar Orbiter scientific archive at the European Space Astronomy Centre (ESAC)
- Provide to ESA unlimited access to all processed and analyzed data for public relation purposes during the 3-months proprietary period
- Provide summaries of the main scientific results at regular intervals
- Maintain the instrument flight software

All of the activities that support these objectives are under the supervision of the ROC, which has the two-tier function of a data processing centre and an operations centre for the RPW instrument. However, most of the ROC tasks are carried out in close collaboration with the other parties who have delegated responsibilities for the ground segment and operations.

In the framework of the ground calibration campaigns at RPW system level, it has been decided that the ROC shall also develop, deliver and maintain a SGSE dedicated to postmortem analysis of data. The so-called ROC SGSE shall support calibration validation, but also be a milestone in the development of ROC infrastructure for in-flight RPW data processing as well as monitoring.

2.2 Constraints of the project

2.2.1 During the phase "D" of the Solar Orbiter mission

The phase "D" of the Solar Orbiter mission corresponds to the so-called "Qualification and Production" step, prior to the launch. The following sections present the main milestones at both mission and RPW levels, which involve the ROC during this period.

2.2.1.1 ROC involvement in the RPW instrument engineering activities: main milestones

The table below gives the milestones before the launch, relative to the ROC involvement to the RPW engineering activities.

RPW engineering	ROC involvement	Schedule / deadline
activity description		
RPW DPU flig	ht software SBM1/SBM2 detection algorithms ground validat	ion campaign
RPW DPU SBM1	Develop, run and maintain software to support the validation of	Sept. 2015-June 2016
detection algorithm	the SBM1 detection algorithm by the RPW Flight Software	
validation campaign	team. Especially, this software must be able to simulate the	
	detection and produce input files for the RPW DPU software.	
RPW DPU SBM2	Develop, run and maintain software to support the validation of	Sept., 2015-June
detection algorithm	the SBM2 detection algorithm by the RPW Flight Software	2016
validation campaign	team. Especially, this software must be able to simulate the	
	detection and produce input files for the RPW DPU software.	
	RPW system ground calibration campaigns	
RPW EM2 blank	Develop, run and maintain a SGSE to support RPW teams in	April-Sept. 2016
calibration campaign	the analysis of the data produced during the EM2 calibration	
at CNES (Toulouse,	campaign. This SGSE will have to be deployed at the CNES	
France)	site in Toulouse, as part of the RPW CNES GSE.	
RPW PFM thermal	Run and maintain the SGSE to support RPW teams in the	Nov. 2016 to Jan.
calibration campaign	analysis of the data produced during the PFM calibration	2017
at LESIA (Meudon,	campaign.	
France)		
RPW PFM delta-	Run and maintain the SGSE to support RPW teams in the	May-June 2017
calibration campaign	analysis of the data produced during the PFM delta-calibration	
at CNES (Toulouse,	campaign.	
France)		

Table 2. ROC involvement in the RPW engineering activities before the launch: main milestones.

2.2.1.2 ROC involvement in the Solar Orbiter mission engineering activities: main milestones

The table below gives the milestones prior to the launch, relative to the ROC involvement to the Solar Orbiter mission engineering activities. It concerns mainly testing activities driven by the Solar Orbiter SOC and/or MOC, namely:

- The Low Latency (LL) engineering activities [RD11]
- The SOC Instrument Team (IT) interface tests [RD10]
- The MOC IT interface tests [RD??]
- The System Operations Validation (SOV) [RD7, RD9]
- The System Validation Test (SVT) [RD7, RD9]

It must be noticed that the ROC has no visibility on the MOC - IT interface tests organization, specification and schedule at this stage of the project, as well as concerning the organization and validation of the infrastructure for the NECP RPW-related operations at ESOC.

Solar Orbiter	ROC involvement	Schedule / deadline
MOC/SOC		

-	13	1	54	-
---	----	---	----	---

engineering			
activity			
description			
	Low Latency Virtual Machine (LLV)	M) delivery schedule	
"Hello World"	To provide to the SOC a first "Hello world"	January, 31 2016	
LLVM version	version of the LLVM for RPW, that processes		
deliverv	fake RPW LL packet data.		
LL Data	To provide to the SOC the LL Data	February 29, 2016	
Description	Description Document (DDD) for RPW		
Document			
(DDD) delivery			
LL Testcard	To provide to the SOC the LL Testcard files	March 31, 2016	
delivery	for RPW	Wateh 51, 2010	
	To provide to the SOC a second version of the	June 20, 2016	
LL V IVI	I UVM that includes real DDW I L packet data	Julie 30, 2010	
processing	LL VIVI that includes lear KF w LL packet data		
delivery	processing.		
	To any iteration of the SOC of the antion of the	A	
	To provide to the SOC a full version of the	August 31, 2016	
processing +	LLVM that includes real RPW LL packet data		
tests version	processing and self-testing processes.		
delivery			
	SOC – IT interface t	ests	
Compatibility	The Compatibility Tests will consist of data	April – Oct. 2016	
tests	exchange and manual check of the formats of		
	the data products.		
Integration	Integration Tests will consist on data	March – July 2017	
tests	exchange and running specific Sub-System(s)		
	in order to read and execute some involved		
	parts of the Sub-Systems and in order to be		
	able to evaluate the output.		
Validation	The Validation Test Cases will	April 2018	
tests	be part of particular System Tests which will		
	involve running the entire System or relevant		
	part of it involving all the data product		
	exchange needed for given Interface Test.		
System Operation Validation engineering activities			
SOV-0: Data	Test the data distribution interfaces between	Launch – 10 months	
Distribution	the MOC and the ROC.		
interface Test			
SOV-1:	Will involve instrument inputs.	Launch – 9 months	
MOC/SOC	-		
interface Test			
SOV-2: Cruise	Will involve In Situ (IS) instruments, and	Launch – 6 months	
Operations	some limited Remote Sensing (RS)		
End-to-end	participation		
Test			
SOV-3: OBSM	Will involve all instruments	Launch – 6 months	
End-to-End			
Test			
	System Validation Test engine	ering activities	
SVT-0:	First set of flight procedures for RPW to be	Launch – 18 months	
devoted to	run during the SVT-0		
unit-level			
commanding			
SVT_1. to	RPW User Manual complete All the inputs	Launch -9 months	
validate closed	required for Near Earth Commissioning Dage		
loon heheviour	and Cruise Phase (timeline and procedures)		
	Instrument Teams to provide inputs and		
	insu ament reams to provide inputs and		

- 14 / 54 -

	support iterations as necessary. All inputs required to test on the PFM to validate as far as possible instrument database and procedures. Instrument Teams to provide all test inputs. These inputs are expected to be delivered 3 months before the SVT-1. Instrument Team with decision authority to support test at test site. Un to two instruments	
	tested in parallel.	
SVT-2: at the	Retest of any problems found with	Launch – 4 months
launch site, to	Instruments during SVT-1	
perform last		
minute		
validation		

Table 3. ROC involvement in the ESA engineering activities before the launch: main milestones.

2.2.1.3 ROC key points and formal reviews

The table below lists the ROC key points and formal reviews planned prior to the launch. The details about the organization and the expected data packages are reported into the "ROC Software Product Assurance Plan" (SPAP) [RD8].

It must be noticed that no formal acceptance review of the instrument ground segments will be conducted by ESA before the launch.

Key points / Reviews	Purpose	Scheduled date/time
Preliminary Design Key point (PDKP)	Preliminary design key point of the ROC organization and design organized by CNES	2017/01/16
End of Design Key point (EDKP)	End of design key point of the ROC organized by CNES	Fall 2017
Validation Reviews	Internal review in preparation to the ROC validation campaign. This campaign will have to start with a Test Readiness Review (TRR) and to finish with an Test internal Review Board (TRB)	Launch – 12 months (TBC)
Acceptance Review (AR)	RPW ground segment acceptance review.	Launch – 3 months (TBC)

Table 4. ROC main key points and reviews.

2.2.2 During the phase "E" of the Solar Orbiter mission

2.2.2.1 Solar Orbiter mission phases

The "E", also called "utilisation", phase starts at the launch. Figure 1 indicates the timeline of the different phases of the Solar Orbiter mission and the corresponding operations planned during the "E" phase.

- 15 / 54 -

Figure 1. Solar Orbiter mission phases.

The "E" phase can be divided into two periods:

- The "E1" phase, which only covers the Launch & Early Operations Phase (LEOP) and the Near Earth Commissioning Phase (NECP).
- The "E2" phase, which begins with the Cruise Phase (CP) and continue with the Nominal Mission Phase (NMP)

The Extended Mission Phase (EMP) may prolong the NMP.

2.2.2.2 Key flight operations involving RPW

The key operations, involving RPW during the Solar Orbiter mission, are detailed in the "RPW Operation Concept" document [RD1].

Figure 2 gives an overview of the RPW operations timeline over the main phases of the mission.

Figure 2. RPW operations timeline.

During the LEOP:

• SCM boom & ANT (x3) deployments

During the NECP:

- Inter-Instruments auto-compatibility interference campaign
- RPW-PAS filtering tune campaign
- RPW-SPICE heat shield door (HSD) Z antenna (ANT) bending effect characterization (TBC). This effect might be analysed after the NECP to follow possible changes with the distance to the Sun.
- TDS/LFR software algorithms validation campaign
- SBM1/SBM2 detection algorithms validation campaign
- Bias current setting operations life-cycle validation campaign

During CP:

- Near Earth ANT calibration rolls
- SCM noise characterization (when the S/C trajectory crosses the Earth magnetic lobes)
- SBM1/SBM2 selective downlink operations life-cycle validation campaign

During NMP and EMP:

- The SURVEY "NORMAL" mode
- The SURVEY "BURST" mode
- The detection mode for recording both SBM1 (shock crossings) and SBM2 (in-situ Type III) events
- The Bias current setting
- The on-board sub-system calibrations

The preparation and organization of the RPW flight operations shall be described in the "ROC Operations Management Plan" (OMP) document.

- 17 / 54 -

2.2.2.3 ROC key points and formal reviews

Exact schedule and organization about ROC key points or reviews planned after the launch are not defined in details yet. Nevertheless, the commissioning phase will end with a dedicated review, which involves instrument ground segments.

2.2.3 Main phases of the ROC project

The following table summarizes the main phases and tasks of the ROC project related to the activities at Solar Orbiter and RPW projects levels. The list of documents referenced in the table can be found in the section 5.3.

Solo project	ROC project	ROC main tasks	RPW SolO main related	
phase	phase		activitie	s/phases
Phase D	Phase 0	- ROC concept and engineering	N/A	N/A /
		requirement specification. It shall lead		
		to the release of a first version of the		
		ROC CIRD, PMP, SDP and SSS		
DI D	DI 1	documents.		NT/A
Phase D	Phase I	- First release of the PIF document for	EM	N/A
		the phases D and E1.		
		the RPW packet parsing library for the		
		ROC		
Phase D	Phase 2	- Release of the SBM validation	- EM2	- EM
I huse D	I muse =	software and products in support to the	(receiver/sensor	- FM (SolO
		validation of the SBM algorithms at the	stand alone	payload test bench
		RPW DPU Application Software	calibrations and	activities)
		(DAS) level.	blank test	,
		- Releases of the ROC SGSE versions	calibrations at	
		for the RPW ground calibration	system level)	
		activities (EM and PFM)		
		- Releases of the preliminary RPW Low	- PFM (thermal	
		Latency Virtual Machine (LLVM) calibrations)		
		- ROC PDR		
		- Release of the RPW Operations and		
		Data Pipeline (RODP) preliminary		
		version for the test bench activities at		
		Bologga of the "ready for flight"		
		version of the ROC Software System		
		- ROC AR		
Phase E1	Phase 3	- RPW commissioning operations	RPW	LEOP
		(instrument switch-on and antenna	commissioning	
		deployment critical operations)		
		- Validation of the ROC infrastructure		
		and release of the "fully operational"		
		ROC Software System		
Phase E2	Phase 4	- RPW Cruise Phase operations	Instrument	CP
		(instrument performance analysis and	exploitation phase	NMP, EMP
		optimization)		
		- KPW Nominal and Extended Phases		
		operations (instrument monitoring and		
		processing dissemination and archiving		
		activities)		
		activities)		

Table 5. ROC project main phases.

2.3 The Solar Orbiter mission operations implementation plan

The implementation plan for the Solar Orbiter mission operations is described in the "Solar Orbiter Mission Implementation Plan" (MIP) [RD7].

3 ROC PROJECT PRESENTATION

3.1 ROC function tree

Figure 3 presents the ROC function tree. The tree is divided into 6 main branches of activities, which must meet the requirements defined in the CIRD:

- **Data processing**, which regroups functions related to the RPW data processing, including Low Latency data production, and the assessment of the science data products quality.
- **In-flight Performance optimization and Calibration**, which gathers functions related to the instrument performance optimization and calibration after the launch.
- **Operations**, which concerns all of the science and engineering activities to be coordinated by the ROC to perform the instrument operations.
- **Ground support**, which focus on the ROC functions related to the ground support activities; mainly GSE facilities for system calibrations, anomalies investigation and SBM detection algorithms validations).
- **Project management**, which gathers the functions concerning the management of the ROC as a project, including the documentation management and the ROC logistics.
- **Data dissemination and archiving**, which regroups functions related to the RPW data distribution and archiving.

The following table gives more details about the functions of each branch.Functional branchFunctionDescription

- 19 / 54 -

Data Processing	RPW Packets processing	Retrieve from the SOC/MOC, identify and parse
		correctly the RPW TM packets.
		Retrieve and analyse the TC history catalogue.
Data Processing	RPW Low Latency data	Process RPW Low Latency data as required by
_	processing	the SOC.
Data Processing	RPW science and HK data	Process RPW science and HK data products,
	processing	including calibrated science data.
Data Processing	RPW science data	Ensure that the RPW calibrated science data
_	validation	quality is as close as possible from the instrument
		science requirements
Data processing	Mission and RPW ancillary	Ensure the retrieval, processing of the ancillary
	data processing	data (i.e., orbit/attitude/frame/time SPICE
		kernels)
In-flight performance	In-flight effective antenna	Perform the RPW effective electric antenna
optimization and calibration	calibration	calibration after the launch.
In-flight performance	BIAS current setting	Optimize the BIAS current values during the
optimization and calibration		whole mission
In-flight performance	Sub-system internal	Monitor the sub-system internal calibrations
optimization and calibration	calibration monitoring	
In-flight performance	Sub-system performance	Optimize the sub-system performance and
optimization and calibration	optimization and	calibration
	calibration	
In-flight performance	SBM detection algorithm	Optimize the SBM1/SBM2 algorithm detections
optimization and calibration	optimization	
In-flight performance	On-board data storage	Optimize the on-board data storage
optimization and calibration	optimization	
Operations	RPW data monitoring	Monitor the instrument data: TM/TC, HK and
		science data, the sub-systems status, event
		reporting, actual TM data rate, on-board memory
		storage, power consumption
Operations	RPW instrument	Prepare and submit instrument operation requests
	commanding	in agreement with the mission operation planning
		and constraints (e.g., data rate, power
		consumption, events, etc.)
		Plan the GSE in support to this activity
Operations	RPW routine operations	Plan and coordinate the RPW routine operations
	management	management in terms of procedures, team
		responsibilities, software and logistics
Operations	SBM selective downlink	Plan and perform the SBM data selection life
	management	
Operations	non-routine operations	Plan and coordinate the KPW non-routine
	шападетент	operations (e.g., FDIK) management in terms of
		procedures, team responsionnes, software and
Operations	Commissioning	Drenare and support the DDW specific operations
Operations	Commissioning	planned during the commissioning phase
Ground support	System calibration software	Provide software support during on ground
Ground support	support	alibration tests at system level
Ground support	Support System calibration	Derticipate to the system calibration validation
Ground support	validation	during ground calibration campaigns
Ground support	SRM algorithm validation	Support RDW flight software team in the SDM
Ground support		detection algorithm test and validation on ground
Ground support	SOV/SVT support	Participate to the SOV/SVT compaigns
Ground support	Anomalias analysis support	Participate to the analysis of anomalies using
Ground support	Anomanes analysis support	RPW GSE facilities
Project management	Project management	Manage the ROC project
Project management	Anality Softwara Draduct	Ensure the Quality Assurance / Droduce
	Assurance	Assurance of the ROC project
	1 4 X J J U I U I V V	

	1	-
Project management	Documentation	Ensure that documentation management
	management	
Project management	ROC logistics	Ensure that ROC logistics (hardware/software
		support equipment, logistics for meetings,
		collaboration tools, etc.)
Project management	Publication and public	Manage the publication and public outreach
	outreach	activities around RPW
Data Dissemination and	Data availability &	Ensure that availability and the accessibility of
Archiving	accessibility	RPW data in terms of products, documentation,
		user interfaces and software
Data Dissemination and	Data archiving	RPW data archiving activities with ESA and
Archiving	_	CDPP. Primary data storage at the LESIA.

 Table 6. ROC functions.

3.2 ROC product tree

3.2.1 ROC Software System (RSS)

The ROC Software System (RSS) is the top-level system of the ROC. It gathers all of the software systems required to ensure the ROC functions listed above. It is divided into two systems:

- The ROC Ground Equipment Support (ROC GSE), which regroups software equipment in support to the instrument system and sub-system tests performed on-ground, before the launch and during the operations in-flight.
- The ROC Operations And Data System (ROADS), which concerns software equipment to perform the on-board instrument data processing and operations.

Figure 4 shows the RSS product tree. The sub-systems of the ROC GSE and ROADS are briefly presented in the next sections. More details can be found in the "ROC Software Development Plan" (SDP) document [RD3]. The RSS specification and design will have to be defined in dedicated "ROC Software System Specification" (RSSS) document and "ROC Software System Design Document" (RSSD).

Figure 4. ROC Software System product tree.

3.2.1.1 ROC Operations And Data System (ROADS)

The ROC Operations And Data System (ROADS) contains the software tools in support to the RGS activities during the Solar Orbiter mission.

Figure 5 shows the overall software product tree of the ROADS. The description and functionalities of the MCS and DPS software units, including the data products and databases, are more detailed in the SDP.

The ROADS is composed of the two sub-systems:

- The ROC Monitoring and Control Subsystem (MCS), which gathers at least the following software units:
 - The "MCS User Interfaces" (MUSIC); a Web interface allowing the ROC operations team to prepare, submit and control the RPW operations (FAUST tool), view the mission planning (OPERA tool) and monitor RPW data (TV tool). Besides, MUSIC includes dedicated tools to generate the flight procedures (FIGARO tool) and view/select the SBM1/SBM2 event data to downlink (SISSI tool).
 - The RPW "TM data Rate Calculator" (TRAC); a software tool capable of computing the TM data rate as a function of the instrument operating modes.
 - The RPW "Power Consumption Analyser" (POCA); a software to monitor the instrument power consumption
 - The RPW "Instrument Commanding Automaton" (INCA); a software that includes a instrument state model, in order to link sequences of TC w.r.t operating modes, power and data rate in an automated way.
- The ROC Data Processing Subsystem (DPS) contains at least the following software units:
 - The ROC Operations and Data Pipeline (RODP); the main RPW data processing pipeline, which must also support some automated tasks relative to the operations. The list of RPW data sets to be produced by the RODP is available in [RD13].
 - The RPW Calibration Software (RCS); a set of software dedicated to the RPW science data calibration and L2 science data files production. The RCS will be delivered by the RPW analyser/sensor teams (i.e., TDS, LFR, THR, Bias, SCM) and run as components of the RODP. The list of RCS can be found in the section 4.3.4.
 - The RPW Low Latency Virtual Machine (LLVM); the virtual appliance hosting the RPW Low Latency Data Pipeline (RLLP), in charge of processing the RPW Low Latency data. The primary instance of the LLVM shall be delivered to the SOC to be run at ESAC.
 - The RPW Data Archive (DArc); the infrastructure and tools use for RPW data archiving tasks
 - The RPW Data Access Layer (DAL); the interfaces and services that allow RPW data users to retrieve the instrument data at the ROC site.

- 22 / 54 -

Figure 5. ROADS software product tree.

3.2.2 ROC Ground Support Equipment (ROC GSE)

Figure 6 shows the product tree concerning the ROC Ground Support Equipment (GSE). The ROC GSE application firstly concerns RPW instrument tests performed on-ground before launch, namely: EM2/PFM instrument calibrations at system level and RPW DPU SBM1/SBM2 detection algorithm validation campaigns. Nevertheless, dedicated instances of this software equipment will be used during the Solar Orbiter mission, in order to support possible GSE activities on the instrument.

Two main components are supplied:

- The ROC Software Ground Support Equipment (ROC SGSE), which provides SGSE to analyse RPW packet data during the EM2/PFM ground calibration tests at system level. An instance of the ROC-SGSE will also be deployed at LESIA and used to support the ground test activities during the mission (e.g., TCs sequences validation and anomalies investigation on a RPW "spare" model).
- The SBM Algorithm Validation software (SAVS), supplying software to support the validation of the Selected Burst Modes (SBM) algorithms of the RPW DPU. Tailored instances of the SAVS will be used to optimize the detection rate of the on-board SBM algorithms during the Cruise Phase (CP).

The functionalities of the GSE units are presented in the SDP. *ROC-GEN-MGT-PLN-00013-LES_Iss01_Rev04(Project_Management_Plan).docx*

Figure 6. ROC Ground Support Equipment (ROC GSE) related software products.

4 ROC PROJECT ORGANIZATION AND RESPONSIBILITIES

4.1 Solar Orbiter ground segment organization

The organization of the ground segment at the Solar Orbiter level is presented in the CIRD.

4.2 RPW ground segment organization

Figure 7 shows the institutes and teams involved in the RPW ground segment, as well as the main points of contact. The main role played by each team is presented in the CIRD, however a summary description is given by convenience.

The ground segment includes:

- The ROC team at LESIA, which is detailed in the next section.
- The *sub-systems ground segment teams*, namely: TDS, LFR, TNR-HFR, BIAS and SCM teams, in charge of calibrating their sub-systems, delivering the RPW Calibration Software (RCS) to the ROC, supporting the validation of the science data products and providing expertise during the operations. Moreover, the BIAS team will have to support the ROC in the setting of the Bias currents to apply on-board during the mission. In the same time, the TNR-HFR team shall ensure the calibration of the effective antenna direction and length in-flight.
- The *instrument support teams* at LESIA, namely: System, MEB, flight software, MEB GSE, E-GSE, AIT-AIV teams located at the LESIA. These teams will mainly ensure expertise and support in case of flight software upgrading and anomaly investigation during the mission.
- The *instrument and ground segments support teams* at CNES. The participation of the CNES RPW instrument team in the project will be effective until the end of the commissioning phase. During the CP, NMP and EMP, only CNES support to the instrument exploitation is planned. Nevertheless, the instrument staff may be temporary re-activated on the LESIA demand, in case of anomalies. In addition, the CNES assists the ROC during the D phase in terms of development, quality assurance and command/control support.

- 24 / 54 -

Figure 7. ROC support teams.

The detailed responsibilities of the ground segment personnel are listed in the Table 11.

4.2.1 ROC staff

Figure 8 shows the structure tree of the ROC science and engineering personnel at the LESIA.

Figure 8. ROC staff at the LESIA.

The detailed responsibilities of the ROC personnel at LESIA are listed in the Table 11.

Moreover, the personnel workload can change over the project and shall be maintained up-todate into the *ROC workload management schedule file* (see section 5.1.1.1).

4.3 Responsibilities

4.3.1 Key personnel responsibilities

The definitions and responsibilities of the key personnel involved in the ROC are established in the CIRD.

4.3.2 Institutes responsibilities

The responsibilities of the institutes relative to the ROC activities can be found in the CIRD.

4.3.3 ROC software and data validation responsibilities

This section presents in more details the responsibilities relative to the ROC software and data.

4.3.3.1 Customer versus supplier roles

The following table resumes the customer versus supplier roles concerning the systems, software and database units required to run the RSS.

Software units	Customer	Supplier
RODP	ROC	ROC
ROC SGSE tools	ROC, CNES	ROC

- 26 / 54 -

and databases	AIT/AIV team	
	(for ground	
	calibration	
	campaigns)	
SAVs	ROC (but SAVs	ROC
~~~~~	data products	
	serve as inputs to	
	the RPW DPU	
	flight software	
	team during the	
	ground DPU	
	SBM1/SBM2	
	detection	
	algorithms	
	validation	
	campaign)	
LLVM	SOC (primary	ROC
	instance run at	
	ESAC) / ROC	
	(backup instance	
	run at LESIA)	
RCS	ROC	RPW analyser/sensor teams (BIAS team for BICAS,
		SCM team for SCMCAL, THR team for
		THR_CALBAR, TDS team for TDS_CALBA and
		LFR team for LFR_CALBUT)
MEB GSE tools	ROC	MEB GSE team
and databases		
ROC MDB	ROC	ROC
RPW IDB	ROC	Flight software team (for PALISADE version) /
		MOC (for MiB version)
SolO Mission	ROC	MOC
Information		
Database (MiB)		

Table 7. ROC software customers versus suppliers.

#### 4.3.4 RPW Calibration Software (RCS) specific responsibilities

The RCS will have to be delivered to the ROC by the teams in charge. The ROC is in charge of the S/W execution only, however it is the responsibility of the teams to ensure the maintenance of the RCS during the mission.

The following table summarizes the list of RCS to be developed by which team and for which data products.

Entity i of th RCS name develo test, va maint	in charge ne RCS Entity in chargopment, of the RCS alidation, execution tenance	e Data products generated by the RCS	RCS programming language
-----------------------------------------------------------	------------------------------------------------------------------------------------------	--------------------------------------------	--------------------------------



	and delivery			
BICAS	BIAS team	ROC team	- TDS (LFM) /	MatlabC
	(IRF-U)	(LESIA)	LFR L2/L2S	
			electrical WF data	
LFR_CALBUT	LFR team (LPP)	ROC team	- LFR L2/L2S	Python
		(LESIA)	LFR data	
			products, except	
			WF data	
			- LFR L1R	
			electrical/magnetic	
			WF data	
SCMCAL	SCM team	ROC team	- TDS/LFR	IDL©
	(LPC2E)	(LESIA)	L2/L2S magnetic	
			WF data	
TDS_CALBA	TDS team (IAP)	ROC team	- TDS L2/L2S	IDL©
		(LESIA)	data products,	
			except WF data	
			- TDS L1R	
			electrical/magnetic	
			WF data	
THR_CALBAR	THR team	ROC team	- THR L2 data	IDL©
	(LESIA)	(LESIA)	products	

Table	8.	RCS	responsibilities.
			-

The detailed list of people involved is given in the section 4.3.8.

Note that IDL[©] and Matlab[©] software licence will have to be reported into the ROC Software Re-Use File (RSF).

# 4.3.5 RPW science data production, validation and archiving responsibilities during the Solar Orbiter mission

#### 4.3.5.1 Science data production

The ROC will be in charge to produce the RPW science data at the LZ, L0, L1R, L1 and L2 processing levels during the mission. This hence includes also the calibrated science data, using the RCS delivered by the sub-system teams.

#### 4.3.5.2 Science data quality validation responsibilities

Several steps of validation will have to be realized between the RPW TM data retrieval at the LESIA and the delivery of definitive science calibrated data to the ESA archive centre.

The ROC science team will be in charge of the final validation of the science data. Nevertheless, the expertise of the sub-systems teams will be required to refine calibration process, at least of the beginning of the mission.

Table 9 presents the person in charge of the calibrated science data validation (i.e. data validation leader) at the LESIA, given by science data products category. The contributors from each sub-system team are also indicated; they are supposed to support the ROC for producing good quality science data. Technically speaking, it should mainly consist of delivering to the ROC, refined version of the RCS calibration tables.



Science data	Data validation leader at LESIA	Data validation contributor(s)	
products			
category			
LFR spectral	M.Maksimovic (TBC)	T.Chust (LPP)	
products –			
electric			
component			
LFR WF	F.Pantellini (TBC)	A.Vaivads (IRF-U), T.Chust (LPP)	
products –			
electric			
component			
LFR spectral	O.Alexandrova	M.Kretzschmar (LPC2E), T.Chust	
products –		(LPP)	
magnetic			
component			
LFR WF	O.Alexandrova	M.Kretzschmar (LPC2E), T.Chust	
products –		(LPP)	
magnetic			
component			
LFR	TBD	T.Chust (LPP)	
BP1/BP2			
products			
THR	L.Matteini	M.Maksimovic	
products -			
electric			
component			
THR	L.Matteini	M.Kretzschmar (LPC2E),	
products -		M.Maksimovic	
magnetic			
component			
TDS	M.Maksimovic (TBC)	J.Soucek (IAP)	
histogram,			
stats, MAMP			
and SM-PDS			
products			
TDS WF	M.Maksimovic (TBC)	J.Soucek (IAP)	
products -			
electric			
component			
TDS WF	M.Maksimovic (TBC)	M.Kretzschmar (LPC2E), J.Soucek	
products –		(IAP)	
magnetic			
component			

Table 9. Science calibrated data validation leader.



#### 4.3.5.3 Science data distribution and archiving responsibilities

All of the processed science data files will be stored at LESIA. Preliminary LZ/L1/HK/ANC data will have to be distributed by the ROC within a short time - less than 24 hours after the downloading through the MOC DDS - to the RPW consortium and other instrument teams.

The definitive data will have to be delivered to the SOC within 3-months, in order to be archived at the ESAC data archive centre. The way the science data will be archived at the SOC is described in the Solar Orbiter Archive Plan (SOAP) [RD16].

RPW science data archiving at the CDPP (Toulouse) is also foreseen, but the details are not known at this stage of the project.

# 4.3.6 RPW science data production, validation and archiving responsibilities during the ground calibrations at system level

#### 4.3.6.1 Science data production and distribution responsibilities

During the EM blank calibrations in CNES (Toulouse), the AIT/AIV CNES team will be in charge to ensure the production of L1 uncalibrated science data files, using the local instance of the ROC-SGSE. Resulting CDF format files will have to be then sent to the LESIA using the dedicated exchange file interface (SEF).

During the thermal calibration on PFM in LESIA (Meudon), the ROC team will produce itself the L1 uncalibrated science data from its ROC-SGSE instance. This instance will be deployed on its production server at LESIA. Moreover it shall have a direct access to the CNES MEB GSE database in order to be able to retrieve test log data produced during calibrations.

The L1R/L2S science calibrated data production will be ensured by the sub-system teams them-selves, from the L1 data files provided by the ROC. Data will have to be available within a short time - less than 72h - to the RPW consortium for analysis.

At the end all of the processed science data files will be archived at the LESIA.

#### 4.3.6.2 Science data quality validation responsibilities

The ROC team does not plan to validate the science data quality during the ground calibrations. The primary validation of these data will have to be performed directly by the sub-system teams involved.

#### 4.3.6.3 Science data archiving responsibilities

All of the relevant data produced during the ground calibration campaigns, including standalone, must be archived at the ROC. It includes the following data products:

- LZ, L0, L1 and HK data files produced by the ROC-SGSE
- L1R and L2S data files produced by the RCS
- CDF skeleton tables and calibration tables used to produce the data, as well as the associated documentation

#### 4.3.7 ROC software logistics support responsibilities

#### 4.3.7.1 At LESIA and Paris Observatory

It has been decided that the computer services of the LESIA (GIGL) and of the Observatoire de Paris (DIO), will have in charge to supply facilities to the ROC for the following needs:



- Hosting, maintaining and ensuring the system administration of the ROC hardware equipment, i.e., servers and disks. In practice, ROC servers and disks will be integrated into the LESIA computer infrastructure.
- Ensuring the availability of the network and accesses, which permit data exchange between the ROC equipment and with the external servers (i.e., intranet/internet accesses, NFS-like mounting systems, SFTP/HTTPS servers).
- Maintaining up-and-running collaboration tools (Web page, Git/SVN servers, Wiki page, mailing lists, etc.)
- Supporting ROC team in the use of logistics (e.g., telecon/visiocon system usage).
- Providing a helpdesk to the ROC team in case of assistance or problems. Especially, the GIGL and DIO shall be able to promptly recover these facilities in case of failure.

The following table summarizes the list of equipment and the computer service in charge of the maintenance/assistance. Details about the concerned ROC device can be found in the section. Obsolete equipment is written in grey.

ROC facilities	Service in charge of the maintenance
Servers	GIGL
Data disks	GIGL
Communications	GIGL (at LESIA level) and DIO (at the Observatory level)
(intranet/internet)	
RPW Web portal	GIGL
ROC Confluence/JIRA	GIGL
site	
ROC SVN repository	GIGL
ROC Gitlab server	DIO
ROC mailing lists	DIO
Telecon system	GIGL
Visiocon	GIGL

Table 10. Logistics support to the ROC at LESIA and Paris Observatory.

#### 4.3.8 Personnel responsibilities: summary list

The table 11 gives the list of people involved in or that interact with the ROC.

People in bold font are directly involved in the ROC project, people in italic font are contract employees, and people that don't work anymore in the project are indicated in grey. The list is given in alphabetical order and by team.

Since people can belong to several teams, they can appear several times in the table.

Name	Function(s)	Institut	Contact	
ROC				
A.Aboubacar Amadou	MUSIC Front- end (FIGARO, FAUST, OPERA, SISSI) software	LESIA	aichatour.aboubacar@obspm.fr	



	davalanar		
0.41		LEGIA	
O.Alexandrova	Со-1, В	LESIA	olga.alexandrova@obspm.tr
	merging		
	activity		
	coordinator,		
	SCM		
	waveform		
	expert		
Diane Berard	Instrument	LESIA	diane.berard@obspm.fr
	operations		
	preparation		
	and validation.		
	including		
	LEOP/NECP		
	operations		
V Donnin	DDW ground	LESIA	variar hannin@ahanm fr
A.DOIIIIII	KF w glouliu	LESIA	xavier.bolilili(@bospill.ll
	segment project		
	manager (since		
	Sept. 2017).		
	ROC Software		
	design manager		
	(before Sept.		
	2017).		
	ROC GSE and		
	RODP design		
	and		
	development		
	manager.		
B.Cecconi	MADAWG	LESIA	baptiste.cecconi@obspm.fr
	RPW member		<b>k</b>
	CDDP data		
	archiving		
	support Virtual		
	Observatory		
	(OV) expert		
V da Canabri	DDW ground	LESIA	wanne desen abrie aberro fr
Y.de Conchy	RPW ground	LESIA	yvonne.deconchy@obspm.ir
	segment		
	project		
	manager /		
	ROC budget /		
	operation		
	preparation		
	engineering		
	coordinator		
	(until Aug.		
	2017)		
M.Duarte	ROC SGSE and	LESIA	manuel.duarte@obspm.fr
	TV SGSE	(VIVERIS)	
	software		
	developer		
E.Holle	RPL V0.2.0	LESIA	eleonore.holle@obspm.fr
	developer		· · · · · · · · · · · · · · · · · · ·
L Lamy	Nancay	LESIA	laurent lamy@obspm fr
Lowanny	Decametric	LUGIA	maront.miny@005pin.m
	Array (NDA)		
	DI		
C Lier	DCC malidadian	IESIA	conny lion aborn fr
S.LIUN	manager	LESIA	sonny.non@oospin.n
	LIHAHAYEI	1	



- 32 / 54 -

	MUSIC and		
	MUSIC and		
	LLVM software		
	design and		
	development		
	manager		
	MUSIC		
	backend and		
	LLVM software		
	developer		
I Mattaini	Col	LESIA	lorenzo matteini@obsnm fr
	MADAWC	LLSIA	lorenzo.matterm@obspm.m
	MADAWU		
	KPW		
	representative		
	member		
	TNR-HFR		
	calibration		
	leader		
M.Maksimovic	RPW PI	LESIA	milan.maksimovic@obspm.fr
QN.Nguyen	ROC RODP	LESIA	quynh-nhu.nguyen@obspm.fr
	and MUSIC-TV		
	software		
	developer /		
	RPW user		
	library		
	davalanar		
ED	Gelener	LECIA	
F.Pantellini	Col, spacecraft	LESIA	filippo.pantellini@obspm.fr
	potential		
	simulation with		
	SPIS tool		
•			
S.Papais	ROC software	LESIA (Nexeya)	Stephane.PAPAIS@nexeya.com
S.Papais	ROC software product	LESIA (Nexeya)	Stephane.PAPAIS@nexeya.com
S.Papais	ROC software product assurance	LESIA (Nexeya)	Stephane.PAPAIS@nexeya.com
S.Papais	ROC software product assurance manager	LESIA (Nexeya)	Stephane.PAPAIS@nexeya.com
S.Papais T.Sauziere	ROC software product assurance manager RPW Packet	LESIA (Nexeya)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr
S.Papais T.Sauziere	ROC software product assurance manager RPW Packet parsing library	LESIA (Nexeya) LESIA (AVISTO)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr
S.Papais T.Sauziere	ROC software product assurance manager RPW Packet parsing library software	LESIA (Nexeya) LESIA (AVISTO)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr
S.Papais T.Sauziere	ROC software product assurance manager RPW Packet parsing library software engineer	LESIA (Nexeya) LESIA (AVISTO)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr
S.Papais T.Sauziere	ROC software product assurance manager RPW Packet parsing library software engineer System	LESIA (Nexeya) LESIA (AVISTO)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration /	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support	LESIA (Nexeya) LESIA (AVISTO) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr
S.Papais T.Sauziere A.Vecchio	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support	LESIA (Nexeya) LESIA (AVISTO) LESIA TNR-HFR	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team
S.Papais T.Sauziere A.Vecchio B.Cecconi	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA (ROC)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC)	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration software co-	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration software co- responsible	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration software co- responsible (after April	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration software co- responsible (after April, 2017)	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr
S.Papais T.Sauziere A.Vecchio B.Cecconi M.Maksimovic L.Matteini	ROC software product assurance manager RPW Packet parsing library software engineer System calibration / operation preparation science support TNR-HFR calibration support TNR-HFR CoI, goniopolarimetr y expert TNR-HFR Lead Co-I TNR-HFR data calibration software co- responsible (after April, 2017)	LESIA (Nexeya) LESIA (AVISTO) LESIA LESIA LESIA (ROC) LESIA	Stephane.PAPAIS@nexeya.com thierry.sauziere@obspm.fr antonio.vecchio@obspm.fr team baptiste.cecconi@obspm.fr milan.maksimovic@obspm.fr lorenzo.matteini@obspm.fr



- 33 / 54 -

<b>F</b>	111 /		
	calibration		
	software		
	engineer		
K.Boughedada	TNR-HFR	LESIA	kamal.boughedada@obspm.fr
0	flight software		
	engineer		
A Vacabio	TNP HEP data	LESIA	antonio vecchio@obsnm fr
A. Vecchio	nik-mik uata	LESIA	antonio.veccino@oospin.n
	calibration		
	software co-		
	responsible		
	(until April		
	2017)		
	• •	LFR te	am
T.Chust	LFR Lead Co-I	LPP	thomas.chust@lpp.polytechnique.fr
<b>B</b> .Katra	LFR flight et	L'bb	bruno katra@lpp polytechnique fr
Diffatia	data calibration	211	oruno.kutu@ipp.poryteeninque.ii
	uala cambration		
	sonware		
	engineer		
<b>K.Piberne</b>	LFR calibration	LPP	rodrigue.piberne@lpp.polytechnique.fr
	software		
	support		
	engineer		
		TDS te	am
V.Krunar	TDS data	IAP	vk@ufa cas cz
, upui	definition and		1.004141.040102
	software		
	sonware acientist		
D. D.	support scientist	TAD	
D.Pisa	TDS data	IAP	dp@ufa.cas.cz
	calibration		
	software		
	engineer		
J.Soucek	TDS Lead Co-I	IAP	soucek@ufa.cas.cz
		BIAS te	am
E.Johansson	BIAS data	IRF Uppsala	erik.johansson@irfu.se
	calibration	11	, <u> </u>
	software		
	engineer		
V Vhotrointeor		IDE Unnacle	un million for an
Y.Knotyaintsev	BIAS COI /	IKF Oppsala	yun@inu.se
	RPW data		
	definition		
	support		
A.Vaivads	BIAS Lead Co-	IRF Uppsala	andris@irfu.se
	Ι		
	·	SCM te	am
J.Y.Brochot	SCM data	LPC2E	Jean-Yves.Brochot@cnrs-orleans.fr
-	calibration		
	software		
	engineer		
C C Charren	SCM data	LDC2E	Camil Cosson Changi Gazar arlang fr
U.L.Chenal		LFC2E	Gamm.Cassam-Chenal@cnrs-orieans.fr
	calibration		
	software		
	support		
	engineer		
M.Kretzschmar	SCM CoI /	LPC2E	matthieu.kretzschmar@cnrs-orleans.fr
	SCM data		
	calibration and		
	around segment		
	ground segment		
	manager		



CNES AIT/AIV engineer Team				
E.Guilhem	RPW CNES	CNES	emmanuel.guilhem@cnes.fr	
	AIT/AIV	(ALTRAN		
	manager (until	Technology)		
	Jan. 2018)			
	EMC &			
	Performance			
	Support (until			
	Jan. 2018)			
J.Sanisidro	RPW CNES	CNES	julien.sanisidro@cnes.fr	
	AIT/AIV			
	Manager			
J.Segur	EMC &	CNES (Sogeti)	jerome.segur@sogeti.com	
_	Performance			
	Support			
		LESIA AIT/AIV e	ngineer Team	
G.Barbary	MEB AIT	LESIA	gaele.barbary@obspm.fr	
	Manager			
A.Habet	MEB AIT	LESIA	abderrahmane.habet@obspm.fr	
	engineer			
S.This	MEB AIT/AIV	LESIA	simone.this@obspm.fr	
	Manager			
L.D. Malaa Allain	LESIA F	light software / Co	mmand control leam	
L.R. Malac-Allain	Command and	LESIA	leeroy.malac-allain@obspm.fr	
	Control			
	Architect /			
	Flight Software			
	manager			
D Dlaggar	Support	LECIA	nhilinna nlagaan ahanm fr	
P.Plasson	Command and	LESIA	philippe.plasson@obspm.ir	
	A rehitest /			
	Flight Software			
	Manager			
	CNFS Common	d control / ground	segment engineering support	
I.M. Travert	Command	CNFS	jean-michel travert@cnes fr	
3.1VI. 114VOIt	control / ground	CIVED	Jean miener.travertajenes.tr	
	segment			
	engineering			
	support			
	CN	ES RPW User Ma	nual leader team	
E.Guilhem	RPW CNES	CNES	emmanuel.guilhem@cnes.fr	
	AIT/AIV	(ALTRAN	6	
	manager (until	Technology)		
	Jan. 2018)	057		
	EMC &			
	Performance			
	Support (until			
	Jan. 2018)			
Eric Lorfevre	RPW System	CNES	eric.lorfevre@cnes.fr	
	engineer (after			
	Jan. 2018)			
J.M. Travert	Command	CNES	jean-michel.travert@cnes.fr	
	control / ground			
	segment			
	engineering			
	support			
		Syster	n	



S.Chaintreuil	RPW System	LESIA	sylviane.chaintreuil@obspm.fr	
E Call	DDW CNEG	ONES		
E.Guilhem	RPW CNES	CNES	emmanuel.guilhem@cnes.fr	
	AIT/AIV	(ALTRAN		
	manager (until	Technology)		
	Jan. 2018)	0.57		
	FMC &			
	Dorformance			
	Perioritalice			
	Support (until			
	Jan. 2018)			
Eric Lorfevre	RPW System	CNES	eric.lorfevre@cnes.fr	
	engineer			
Yann le Huédé	RPW EMC	CNES	vann.lehuede@cnes.fr	
	support			
Rernard Pontet	RPW System	CNES	hernard pontet@cnes fr	
Demara I ontet	NI W System	CILLS	bernard.pointet@enes.ii	
	engineer	ME	D	
		ME	B	
M.Dekkalı	MEB/PA	LESIA	moustapha.dekkalı@obspm.fr	
	Project			
	Manager			
		MEB GSE	(LESIA)	
L.Gueguen	MEB GSE	LESIA	loic.gueguen@obspm.fr	
2.0408401	Software	LLDIII	ione.gaogaen.@coop	
	Manager			
	Wallager			
<u>UD 111</u>	DDULE COE	MEBEGSE	L (LESIA)	
K.Boughedada	RPW E-GSE	LESIA	kamal.boughedada@obspm.fr	
	software			
	support			
D.Dias	<b>RPW E-GSE</b>	LESIA	daniel.dias@obspm.fr	
	manager		U I	
		Project manage	ment (CNES)	
E Bellouard	RPW Project	CNES	elise bellouard@cnes fr	
D.Denouura	Manager	CIVED	ense.oenouura@enes.m	
I Enotton	Salar Orbitar	CNIES	isshalls frotter@erres fr	
I.FIatter	Solar Orbiter	CNES	Isabelle.fratter@ches.fr	
	Project			
	Manager			
	(French			
	contribution)			
C.Laffaye	<b>RPW</b> Project	CNES	catherine.laffave@cnes.fr	
J	Manager		5 0	
M Rouze	RPW Project	CNES	michel rouze@cnes fr	
WI.ICOUZC	avploitation	CIVLD	mienei.rouze@enes.m	
	A			
	Manager			
	Ground seg	nent software de	velopment support (CNES)	
D.Raulin	RPW and	CNES	des1.raulin@cnes.fr	
	SPICE ground			
	segment			
	development			
	support			
	F	ELDS / Solar Pr	obe Plus (NASA)	
S Bale	FIELDS PL/	SSL	hale@ssl berkeley edu	
S.Duiv	RDW/Lood Col	SSL	ouroussi.conterey.eau	
V.C. ant-		Lininganit - C	an at-Our a du	
K.GOetz	FIELDS system	University of	goeiz@umn.eau	
		Minnesota		
M.Pulupa	FIELDS ground	SSL	pulupa@berkeley.edu	
	segment lead			
		STIX team	(LESIA)	
N.Vilmer	STIX Col.	LESIA	nicole.vilmer@obspm.fr	



- 36 / 54 -

STIX-RPW		
joined science		
exploitation		
main		
interlocutor at		
LESIA		

Table 11. Key personnel involved in the RPW Ground Segment activities.

# 5 CONFIGURATION, INFORMATION AND DOCUMENTATION MANAGEMENT

## 5.1 Configuration management plan

#### 5.1.1 Project management files and tools

#### 5.1.1.1 ROC workload management schedule file

The workload management schedule of the ROC shall be written in a dedicated file in the  $Excel \bigcirc 2007$  format. It shall provide the workload for each ROC agent at LESIA, its:

- Name,
- Agent category (e.g., "engineer", "scientist")
- Function (e.g., "developer", "Project Manager", etc.)
- Position type (e.g., "permanent position", "temporary contract")
- Eventually its arrival/departure dates in the project
- Percentage of workload over the timeline of the project.

The PM shall ensure that this document is always up-to-date.

#### 5.1.1.2 ROC project planning file

The ROC project planning shall be written in a dedicated file in the Microsoft Project $\bigcirc$  file format. This file shall contain the detailed planning of the project, including the main milestones, the phases of software development, validation campaigns and delivery deadlines. It shall also permit to identify the origin and contribution of the person in charge.

Two separated files can be used to distinguish between the preparation/validation phase (i.e., the phases 1, 2 and 3, including the commissioning in-flight) and the exploitation phase (i.e., the phase 4).

The PM shall ensure that this document is always up-to-date.

#### 5.1.1.3 ROC mailing lists

In addition to the RPW mailing lists, the ROC team shall maintain the following lists:

- roc.cal List of people involved in the instrument calibration activities
- **roc.rcs** List for the discussions related to the RCS engineering activities (i.e., development, integration, data production, etc.)
- roc.ops List for discussions concerning the RPW operations (only engineering part).
- **roc.sci-ops** List for discussions concerning the RPW science operations.



- roc.rpw-um List for discussions concerning the RPW User Manual.
- **roc.sgse** List of people involved in the ROC-SGSE development, interface and data product definition
- roc.lesia Internal list used by the ROC science and engineering teams at LESIA.
- roc.tech Mailing list of the ROC engineering team at LESIA
- roc.teams List of all of the personnel directly concerned by the ROC activities.
- **rpw-roc.recrut** Internal mailing-list dedicated to the ROC personnel hiring.
- **roc.support** Mailing list to be used by the ROC data and software users for assistance.

The PM shall be a moderator of these lists.

#### 5.1.1.4 ROC project issue tracker tool

The ATLASSIAN JIRA[©] software shall be used as the main issue tracker tool by the ROC team. Especially the following JIRA projects shall be implemented:

- **ROC-ADMIN** administrative management of the ROC project
- **ROC-DATAPROD** issues about the RPW science data production. Especially, the RCS teams shall use it in order to report issues related to their software and data.
- **ROC-OPERATIONS** issues relative to the instrument operations
- **ROC-PIPELINE** ROC pipelines (RODP) issues project
- **ROC-GITLAB** project used to archive Gitlab issues.
- **ROC-RPWLIB** issues relative to the instrument packet analysis
- **RPW-TESTS-SOL** issues relative to the ROC GSE
- **RPW-REVIEWS** issues relative to the ROC key points and reviews

In addition to JIRA, the ROC developer team at LESIA shall also use the Gitlab tool as an internal issue tracker, in order to monitor the software development, as explained in the SDP.

In all cases, all the ROC project-related issues (i.e., action-items, anomalies, bugs, new software feature, etc.) will have to be centralized in the JIRA tool.

#### 5.1.1.5 ROC Project Wiki page

The ROC team shall maintain a Wiki page for the project, in order to give a centralized access to the people involved in the project. Especially this Wiki shall permit to:

- Centralize and view the list of action-items and anomalies of the project (including the JIRA issues)
- Archive the meeting notes and associated items (documents or presentations)
- Share information, documentation and resources with people involved in the project.

The ROC Wiki page relies on an ATLASSIAN Confluence[®] server to work.

#### 5.1.2 Software development specific files and tools

The specific files and tools in support to the software development shall be listed in the SDP. ROC-GEN-MGT-PLN-00013-LES Iss01 Rev04(Project Management Plan).docx



#### 5.1.1 Requirements traceability management

The following scheme shall be applied to support the traceability of the requirements:

The top-level requirements (e.g., EID-A) shall be translated in terms of implementation requirements in the "ROC Concept and Implementation Requirements Plan" (CIRD).

In parallel, the PM shall write a "Top-level requirements traceability matrix", in order to ensure the verification of the ROC implementation to the higher-level requirements.

The technical specification requirements of the RSS shall be reported into the dedicated "ROC Software System Specification" (RSSS) document.

A CIRD-RSSS requirements traceability matrix shall be generated to verify the compliance of the RSSS w.r.t. the CIRD requirements.

The traceability between the RSSS and the implemented design should be also reported in a dedicated document, in order to ensure the validation of the full system.

## 5.2 Information management plan

#### 5.2.1 Regular meetings involving the ROC

The following table gives the list of regular meetings planned during the project. The latest column on the right gives the approximate cadence of the meetings. This cadence is likely to change depending of the phases of the project.

Meeting name	Purpose	Participants	Approx. Cadence
	S	olar Orbiter-related meetings	•
Science Working Team (SWT) Meeting	Discussions and decision about the scientific objectives to reach during the Solar Orbiter mission	SOC + MOC + IT	Every 6 months
Science Operation Working Group (SOWG) Meeting	Preparation of the mission operations according to the science objectives and operational constraints	SOC + MOC + IT	Every 6 months
Modelling and Data Analysis Working Group (MADAWG) Meeting	Discussion concerning data format, science data analysis tools and models for Solar Orbiter	SOC + MOC + IT	Every 6 months
		<b>RPW-related meetings</b>	
RPW Consortium Meeting	Discussions inside the RPW consortium about the instrument manufacturing, performance, calibration and ground segment activities	RPW consortium	Every 6 months



	ROC management-related meetings					
ROC project	Discussions	ROC + CNES RPW management	Every month (after the end of the			
management	between the ROC	team	NECP, the frequency might			
telecon	and CNES RPW		decrease)			
	management team					
	in order to take					
	stock of the					
	progress of the					
	ROC project					
	ROC	development-related meetings				
ROC design	Discussions	ROC + CNES ground segment	Every week (until the end of the			
development	between the ROC	development support team	NECP and the in-flight validation			
telecon	and CNES ground		of the RSS)			
	segment					
	development					
	support team in					
	order to take stock					
	of the progress of					
	the ROC software					
	development					
ROC development	Internal meeting of	ROC developer team	Every 2 weeks (at least until the			
"sprint" meeting	the ROC developer		end of the NECP and the in-flight			
	team at LESIA, in		validation of the RSS.)			
	order to discuss the					
	development					
	"sprints".					
Low latency	Discussion	ROC + SOC + other IT	Every month. After the delivery			
working group	concerning the low		of the full functional LLVM			
telecon	latency data		version the frequency might			
	processing		decrease.			
DDUL 11	implementation					
RPW calibration	Discussions about	ROC + AIT CNES + RPW	Every month. After the CP, the			
telecon	RPW calibrations	consortium	frequency may decrease.			
ROC SGSE telecon	Technical	ROC + RCS teams	Every month, until the			
	discussions about		instrument delivery to ESA.			
	the ROC SGSE					
	Technical		E-come month (contil the end of the			
RUC RUS telecon	Technical	ROC + RCS teams	Every month (until the end of the			
	discussions		NECP. Alter this phase, the			
	Concerning the		frequency may decrease)			
	and integration					
	(including data					
	(including data					
		C operations-related meetings	1			
RPW science	Discussions about	ROC team + RPW PI and Lead	Every month			
operations telecon	the RPW science	Col teams				
sporutions tototon	operations with					
	RPW teams					
	involved					
RPW instrument	Discussion to	ROC + CNES	Every month until the end of the			
operations telecon	discuss about the		commissioning Then in case of			
-perations torecon	instrument		special operations (e.g.			
	(engineering)		calibration rolls anomalies or			
	operations between		flight software upgrades)			
	the RPW teams					
	involved.					
RPW SBM telecon	Discussion to	ROC + RPW PI + In-situ	Every week (as soon as the SBM			



decide the SBM	instrument PIs + FIELDS/PSP PI	selective downlink is operational)
event data to	( <mark>TBC</mark> )	
downlink		

Table 12. ROC regular meetings.

#### 5.2.2 RPW Web portal

The ROC team shall maintain up-to-date a Web portal at LESIA to provide public information concerning the RPW instrument and project. In particular, this portal shall provide access to:

- Overview of the instrument description, its objectives, the Solar Orbiter mission and teams involved in the RPW and ROC projects
- Servers, data centre and services, where RPW data can be downloaded as well as the associated documentation
- Information about software and services that allow the science community to retrieve and use the RPW science data.

## 5.3 Documentation management plan

#### 5.3.1 ROC documentation organization

The following table gives the list of allowed Object ("Objet") and Type of document for the ROC project, with the corresponding node trees and acronyms.

Rubriques Arbre OT pour le projet ROC						
	Obje	t		Туре		
1	GEN	General	1.1	MGT	Management	
1	GEN	General	1.2	SYS	System	
1	GEN	General	1.3	SCI	Science	
1	GEN	General	1.4	QAP	Quality Assurance Produit	
1	GEN	General	1.5	DPK	Datapackage	
1	GEN	General	1.6	OTH	Other	
2	PRO	Processing	2.1	CAL	Calibration	
2	PRO	Processing	2.2	DAT	Data all levels	
2	PRO	Processing	2.3	SFT	Software all levels	
2	PRO	Processing	2.4	PIP	Pipeline	
2	PRO	Processing	2.5	OTH	Other	
3	OPS	Operations	3.1	SBM	Selected Burst Mode	
3	OPS	Operations	3.2	SYS	System	
3	OPS	Operations	3.3	ANA	Analysis	
3	OPS	Operations	3.4	COM	Commissionning	
3	OPS	Operations	3.5	LLD	Low Latency Data	
3	OPS	Operations	3.6	OTH	Other	
4	TST	Tests	4.1	GSE	Ground Support Equip.	
4	TST	Tests	4.2	SBM	Selected Burst Mode	
4	TST	Tests	4.3	OTH	Other	

Table 13. ROC documentation objects and types.



#### 5.3.2 ROC document file naming convention

The ROC documentation management inherits the RPW project convention in terms of reference and file naming convention.

Each ROC document shall be referenced with a unique ID number. The naming convention shall be as followed:

ROC-Object-Type-DocType-XXXXX-Provider_IssYY_RevZZ(Title_of_the_doc).ext

, where *Object*, *Type* and *DocType* fields are the Object, Type and Type of document (see next section for the list of possible Object and Type). *XXXXX* is the ID number, *YY* and *XX* are respectively the issue and revision numbers. *Title_of_the_doc* corresponds to the title of the document and *ext* is the extension of the file.

#### 5.3.3 ROC project management main documentation tree

Figure 10 shows the current management main documentation tree of the ROC project. It provides the main deliverable documents that shall ensure the project activities are fully covered.



Figure 9. ROC project management main documentation tree.

Table below gives the reference and a short description of the ROC project management documentation.

Document	Reference	Description
ROC Concept and	ROC-GEN-SYS-PLN-00002-LES	- Presents the concept of the ROC design.
Implementation		- Lists the responsibilities as well as the
Requirements Document		centre implementation requirements, in
(CIRD)		agreement with higher-level requirements
		defined at RPW and Solar Orbiter system
		levels.
		- Gives traceability matrix with higher-
		level requirements (can be delivered in
		separated file)



ROC Project Management Plan (PMP)	ROC-GEN-MGT-PLN-00013-LES	- Presents the project management plan of the ROC to be followed for implementing, coordinating, and maintaining a full operational centre.
ROC Software Development Plan (SDP)	ROC-GEN-SYS-PLN-00015-LES	- Describes the software development plan of the ROC
ROC Software System Validation Plan (SVP)	ROC-GEN-SYS-PLN-00040-LES	Plan to test and validate the ROC concept and engineering infrastructure. Especially it shall provide the list of tests to be performed, the reason, the procedure and the expected results and the reports to be written.
Proposition Technique et Financière du ROC (PTF) – Phases D et E1	ROC-GEN-OTH-BDG-00010-LES	ROC technical and financial proposal to be addressed to the CNES for the phases D and E1 (in French)
Proposition Technique et Financière du ROC (PTF) – Phase E2	ROC-GEN-OTH-BDG-00048-LES	ROC technical and financial proposal to be addressed to the CNES for the phase E2 (in French)
ROC Software Products Assurance Plan (SPAP)	ROC-GEN-MGT-QAD-00033-LES	ROC Quality Assurance / Product Assurance Plan
ROC Operations Management Plan (OMP)	ROC-GEN-MGT-PLN-00041-LES	Lists and details the organization, tools, procedures and responsibilities required to perform the instrument operations during the mission
ROC Engineering Guidelines (REG)	ROC-GEN-SYS-NTT-00008-LES	Lists the guidelines to be applied by the ROC engineering team at LESIA.
ROC Engineering Guidelines for external users (REGU)	ROC-GEN-SYS-NTT-00019-LES	Extension of the REG for the teams external to the LESIA, but involved in the RPW Ground Segment engineering activities

Table 14. ROC project management documentation.

#### 5.3.4 ROC engineering main documentation tree

#### 5.3.4.1 ROADS main documentation tree

Figure 10 shows the current main documentation tree of the ROADS. It provides the main deliverable documents relative to the instrument operations and data processing activities, supported by the ROC during the mission. This set of documents shall ensure that the concept and the technical approaches fully satisfy the functional requirements defined at both RPW and Solar Orbiter levels.



Figure 10. ROC Operations And Data System main documentation tree.

Table below gives the reference and a short description of the ROADS main documentation. The documents in italic are not showed on the figure above. The items in grey has been removed from the project, or the content has been merged into another document.



Document	Reference	Description
ROC Concept and	ROC-GEN-SYS-PLN-00002-LES	- Presents the concept of the ROC.
Implementation		- Lists the science and operational
Requirements Document		activities as well as the engineering
(CIRD)		capabilities implementation requirements,
		in agreement with requirements defined at
		RPW and Solar Orbiter system levels.
		- Lists the responsibilities of the key
		personnel
RPW Data Products	ROC-GEN-DAT-NTT-00006-LES	List and description of all of the RPW
(RDP)		data products to be generated by the ROC
DOC C.C. C. and C. atom	DOC CEN SVS SDC 4002( LES	during the Solar Orbiter mission.
ROC Software System	ROC-GEN-SYS-SPC-00026-LES	It is the Software System Specification
Specification (RSSS)		(SSS) of the ROC. It covers mainly the
		ROADS
ROC Human-Machine	ROC-OPS-SET-SWU-00039-LES	The content of this file has been inserted
Interfaces User		into the RSSS.
Requirements		
ROC Software System	ROC-PRO-PIP-SPC-00036-LES	RSSDD gathers the Software Design
Design Document		Documents (SDD) for the RSS
(RSSDD)		
<b>RPW</b> Calibration	ROC-PRO-SFT-ICD-00037-LES	Interface Control Document for the RPW
Software Interface		Calibration Software implementation into
Control Document		the RODP.
ROC Software System	ROC-GEN-SYS-SUM-XXXXX-LES	Software user manual of the RSS
User Manual (RSSUM)		
ROC Software System	ROC-GEN-SIS-SUM-XXXXX-LES	Technical reference manual of the RSS
(RSSRUM)		
RPW Low Latency	ROC-OPS-LUD-SPC-00018-LES	Software Design Document of the RPW
Virtual Machine Design	Roe of 5 EED Si e ooo to EES	Low Latency Virtual Machine (LLVM)
Document (LLVMDD)		
RPW Low Latency	ROC-OPS-LLD-SUM-00032-LES	Software User Manuel of the LLVM
Virtual Machine User		
Manual (RLLP SUM)		
Dataset Description	ROC-OPS-LLD-NTT-00028-LES	Description of the RPW Low Latency
Document for RPW Low		Dataset to be produced by the RLLP
Latency CDF files		
(DDD RPW LL)		
ROC Mission Database	ROC-OPS-SYS-SPC-00038-LES	Description of the ROC Mission Database
Description Document		(MDB) architecture and content
(MDBDD)		Descriptions (the DOC DAL facilities
RPW Data Access Layer	IBD	Description of the ROC DAL facilities
(DALD)		concerning KF w data.
RPW Data Archive	TBD	Description of the ROC DArc facilities
Description Document		concerning RPW data
(DAD)		
Bias Operations	ROC-OPS-OTH-ICD-00022-LES	Description of the interface to be
Interface Control		implemented between the Bias and ROC
Document		teams in order to perform Bias-related
		operations.

Table 15. ROC Operations And Data System main documentation tree.



- 44 / 54 -

#### 5.3.4.2 ROC GSE main documentation tree

Figure 11 shows the main documentation tree of the ROC GSE.



Figure 11. ROC GSE main documentation tree.

Table below gives the reference and a short description of the ROC GSE main documentation. The documents in italic are not showed on the figure above.

Document	Reference	Description
ROC Concept and Implementation Requirements Document (CIRD)	ROC-GEN-SYS-PLN-00002-LES	<ul> <li>Presents the concept of the ROC.</li> <li>Lists the science and operational activities as well as the engineering capabilities implementation requirements, in agreement with requirements defined at RPW and Solar Orbiter system levels.</li> <li>Lists the responsibilities of the key personnel</li> </ul>
RPW Calibration Data Visualization User Requirements	ROC-TST-GSE-SWU-00003-LES	List the user requirements in terms of RPW ground calibration data visualization functionalities.
Data format and metadata for the ROC- SGSE	ROC-TST-GSE-NTT-00017-LES	Data format and metadata definition for the ROC-SGSE
ROC SGSE Software Design Document (ROC SGSE SDD)	ROC-TST-GSE-SPC-00004-LES	Software Design Document of the ROC-SGSE.
ROC-SGSE Test Database Description	ROC-TST-GSE-NTT-00021-LES	Description of the ROC-SGSE test database
RPW Calibration Software Interface Control Document	ROC-PRO-SFT-ICD-00037-LES	Interface control document (ICD) of the RPW Calibration Software to be implemented into the ROC-SGSE (the ROC-PRO-SFT-ICD-00037-LES document has superseded ROC-TST- GSE-ICD-00023-LES, which has become obsolete.)



SimuSBM1 Software	ROC-TST-SBM-NTT-00005-LES	Software Design Document of the
Design Document		SimuSBM1 software, dedicated to
-		simulate SBM1 event detections
SimuSBM2 Software	ROC-TST-SBM-NTT-00016-LES	Software Design Document of the
Design Document		SimuSBM2 software, dedicated to
_		simulate SBM2 event detections
Test Viewer SGSE	ROC-TST-GSE-SPC-00012-LES	Technical specification of the Test Viewer
specification		(TV)
Plugin Oriented	ROC-TST-GSE-SUM-00035-LES	Software User Manual of the POPPy
Pipeline for Python		framework used to design the ROC-SGSE
(POPPy) framework		and RODP pipelines.
User Manual		
ROC-SGSE Calibration	ROC-TST-SFT-SUM-00027-LES	Software User Manual of the ROC-SGSE
Software Validation		versus RCS interface validation tool.
Tool User Manual		

#### Table 16. ROC GSE main documentations

#### 5.3.5 ROC requirement identification

The ROC requirements shall be clearly identified in the project documentation. The following conventions shall be applied over the entire project documentation.

Except if it is explicitly mentioned, the ROC requirements are valid during the entire life of the project. They can be cited from a document to another using the requirement identifier keyword.

Every requirement definition shall be assigned a unique identifier (ID). This requirement ID shall have the following structure:

#### **REQ-ROC-ZZZ-XXXX**

, where "REQ" refers to requirement, "ROC" indicates the name of the project, "ZZZ" is a 3characters name which permits to identify the origin of the requirement, and "XXXX" is a 4digits number starting at 0001, and that must be incremented by 1 each time a new requirement is provided for a given requirement origin "ZZZ".

#### 5.3.6 ROC requirement structure

The structure of a requirement is the following:

Requirement ID	Requirement Title	Dependencies
Requirement Body		

The dependencies indicate the IDs of the possible upper level requirements. Only the 3-characters name and the 4-digits number separated by the "-" of the IDs can be displayed for the dependencies (e.g., "REG-0001).

#### 5.3.7 ROC documentation management system

The ROC will rely on the COTRANET documentation management system (DMS) of the LESIA, to book reference and archive its documents.

COTRANET will be also used to build and archive the data packages for the ROC reviews and key points.



# 6 COST AND SCHEDULE MANAGEMENT

# 6.1 Cost management

The estimation of the cost of the ROC project shall be reported into the "Proposition Technique et Financière" document [RD4]. Two documents, one for the 1-2-3 phases (D-E1 mission phases) and one for the 4 phases (E2-EMP mission phases), can be written. The real cost will be monitored using the "Geslab" application (https://geslab.dsi.cnrs.fr) used by the LESIA.

# 6.2 Schedule management

The schedule is maintained with the ROC project-planning file (see section 5.1.1.2).

# 7 INTEGRATED LOGISTIC SUPPORT

# 7.1 Hardware and software logistic supports

The Groupe Informatique Générale du LESIA (GIGL), the computer service of the LESIA, will be the main interlocutor concerning both the hardware and software logistic supports.

Especially, the GIGL will:

- Host and keep available the ROC servers, data disks and network interfaces (hereafter called ROC device).
- Ensure that the ROC device is rapidly replaced in case of failure.
- Provide assistance to the ROC team in order to maintain, recover or upgrade software environment installed on the ROC device.
- Ensure that the LESIA collaboration tools, services and software, which are used by the ROC, are always operational.

It must be noticed that in the case of the mailing lists and Gitlab tools, the ROC team shall directly request support from the Direction Informatique de l'Observatoire (DIO), which is in charge of the computer service management at the Paris Observatory level.

# 7.2 Project logistic supports

In support to its operations activities, the ROC shall have a dedicated operations room at LESIA. Especially, this room will have to supply visioncon system with presentations sharing and to allow ROC team to promptly view via dedicated monitors the latest RPW science and HK data as well as instrument status.

# 8 **RISK MANAGEMENT**

## 8.1 Risk management at the project level

The following table attempts to identify the types of risk that could potentially become points of potential failures for the ROC project activities.

probability solution(s) mitigate the	Type of risk	Cause(s)	Consequence(s)	Severity	Occurrence probability	Proposed solution(s)	Solution(s) to mitigate the
--------------------------------------	--------------	----------	----------------	----------	---------------------------	-------------------------	--------------------------------



- 47 / 54 -

						risk
Personnel reduction in the project	Transfer, voluntary redundancy, contract end, disease, pregnancy, 	Under-sized team, loss of expertise, delays in the project, ground segment human or/and system deficiency	High	Low	<ul> <li>Partially assign an available resource at LESIA</li> <li>Prompt hiring of non permanent post</li> </ul>	- Be sure that the LESIA has potentially another person available - Be sure that funds can be promptly invested for hiring - Sharing information inside the project - Maximizing the redundancy of competences
Lack of experience	Lake of experience of the ROC personnel relative to the necessary expertise required to operate a ground segment	Delay in deliveries, deficient ground segment to perform operations and data processing activites	High	Medium	The ROC shall offer the possibility to its personnel team to get professional training. The ROC shall ask for the support for experimented teams (at CNES, at LESIA, at other laboratories)	The ROC team shall include or be reviewed by high- skilled people relative to ground segment
Exceeding budget	Budget is not controlled	Exceeding budget	High	Medium	The ROC shall ensure that the needs have been well defined and sized	The ROC shall verify that the initial budget has been prepared



			and verified
			with the
			other people
			involved.
			The budget
			shall be
			regularly
			monitored
			over the
			project.

Table 17. Types of risk at the ROC project level.

### 8.2 Risk management at the engineering level

The following table attempts to identify the types of risk that could potentially become points of potential failures for the ROC engineering activities.

Type of rick	Cauca(a)	Consequence(s	Severit	Probabilit	Solution(s) to
туре от тізк	Cause(s)	)	У	у	mitigate the risk
Hardware/Operatin g System (OS) failure at LESIA	Obsolescence , overvoltage	Loss of instrument operation and monitoring capabilities, science data delivery delay	High	Medium	Plan backup systems to be rapidly deployed. To mitigate the risk at OS level, the ROC uses virtual machines as primary servers for the RSS. (Hardware/OS recovery is the responsibility of the GIGL)
ROC Software System failure at LESIA	Bugs, regression, retro- compatibility not supported	Loss of instrument operation and monitoring capabilities, science data delivery delay	High	Low	A stable version of the RSS shall be ready to be deployed quickly (use of Git repos + Python installation package capabilities). Use of continuous integraton strategy with non-regression tests during the



# **ROC Project Management Plan**

Ref: ROC-GEN-MGT-PLN-00013-LES Issue: 01 Revision: 04 Date: 17/11/2017

- 49 / 54 -

					development and validation can also mitigate the risk.
Hardware/OS/RSS failure at the MOC site during the RPW related NECP operations	See previous risks	NECP operations related to RPW cannot be performed correctly by the ROC team	Critical	Low	Plan to have at least two backup software systems ready to be used at the MOC. Perform a validation of the MOC systems. This solution might impact the hardware/softwar e facilities to be deployed at the MOC site.
Obsolete software/hardware	Software updates are not retro- compatible, unavailable hardware devices	Risk of software facilities failures, loss of ROC facilities	Low	Low	Use as much as possible stable, portable and time-honoured software technology
Unexpected personnel reduction in the developer team	Transfer, voluntary redundancy, contract end, disease, pregnancy,	Under-sized team, loss of expertise	High	Low	Prompt Non permanent post hiring or internal replacement by the LESIA
Lack of experience	Developer not familiar with a software technology	Software quality loss, required specification not reached, software delivery delay	Mediu m	Medium	The ROC shall offer the possibility to its developer team to get professional training.

#### Table 18. Identified types of risk at the ROC engineering level.

The identification and the management of the risks related to the ROC software system development shall be described in the SDP document.

## **9 QUALITY/PRODUCT ASSURANCE MANAGEMENT**

The ROC project plans to include QA/PA management in order to:

- Assist the ROC team to define the QA/PA requirements.
- Write the ROC QA/PA plan document



- Ensure that the ROC software and interface products to be delivered are compliant with the requirements defined at RPW and Solar Orbiter levels, including RPW calibration software from analyzer/sensor teams.
- Participate to the preparation of the risk management plan of the ROC
- Support ROC team in the preparation of the preliminary design and acceptance reviews
- Support teams involved in the RPW ground segment activities in the delivery of software product for the ROC.

The requirements, tasks and actors concerning the QA/PA are presented in the SPAP.

# **10 ENGINEERING MANAGEMENT**

The ROC engineering management mainly concerns software system and data of the ROC.

## 10.1 ROC software development approach

The ROC development approach in terms of software infrastructures, logistics, resources and schedules shall be detailed in the SDP document; however the main concept is given in the next section.

#### 10.1.1 ROC software development Agile Scrum approach

#### 10.1.1.1 Concept

The development, testing and validation of the main RSS units at LESIA, namely: RODP, MUSIC, ROC-SGSE and LLVM shall rely on the Agile Scrum approach. It must be noticed that this scheme is not applied for the development of the RCS, which must be done by the Lead CoI teams in charge (see section 10.1.2 for more details about the development approach for the RCS).

As illustrated on the Figure 12, the development timeline shall be composed of several main RSS releases ("R1" and "R2" for instance on the figure), for which the required functionalities shall be listed (see section 10.1.1.2.4). The releases date and functionalities will have to be driven by the constraints of the project; especially it is expected that releases are done prior to the SOV end-to-end tests, launch and commissioning validation report review.



Figure 12. ROC software development sprint concept.



For each release, the software development timeline will have to be split into 2-weeks named "sprints", where the design of the priority functionalities will be developed and/or tested. The priority will have to establish during the sprint kick-off meeting (see next section).

#### **10.1.1.2 ROC sprint implementation**

#### **10.1.1.2.1** Sprint planning convention

Here are some general rules concerning the sprint planning:

- A typical sprint duration shall be 15 days (11 working days). This duration can be occasionally changed if required.
- Every sprint shall end/start with a sprint meeting, where progresses are reviewed for the ending sprint in one hand, and the developer team agrees on the tasks to be done and things to improve for the next starting sprint in another hand. Note that depending of the project planning the development priorities can be changed from a sprint to another.
- A sprint meeting takes place on Friday at 10:00. This day can be occasionally changed, if members of the team cannot attend the meeting.

The GM shall ensure that these rules are strictly respected, and the ROC developers are available to attend the sprint meetings.

#### 10.1.1.2.2 Sprint planning dashboard

In addition, the GM shall report the sprint planning for each release as tables in the ROC Wiki. These tables shall have the following columns:

- **Sprint #** The sequence number of the sprint (must be a integer starting at 0)
- Sprint name Name of the sprint
- Working days Duration of the sprint in working days (i.e., without week-ends and public holidays)
- **Start date** Date when the sprint starts
- End date Date when the sprint ends
- **Tasks** List of tasks for the current sprint. In practice, this list will be managed using the Issue tracker of the ROC Gitlab server.
- Sprint meeting notes It should contain meeting notes concerning the current sprint.
- Comments column to report any comment concerning the sprint.

These tables will have to be accessible by the ROC developers at LESIA.

#### 10.1.1.2.3 Sprint tasks management

The sprint tasks will have to be monitored using Gitlab issue mechanism; one issue shall be created for each task. Especially, an issue shall be only closed: (i) in agreements with the PM and other developers during the sprint meetings. (ii) If the corresponding task has been fully tested and validated.

Moreover, the sprint tasks will have to be classified by software (e.g., "RODP" or "MUSIC") and be labelled according to the priority (e.g., "low", "normal", "high" and "critical"), the type of tasks (e.g., "spec", "feature", "bug", "hotfix") and the status (e.g., "backlog", "to do", "in progress", "testing", "terminated").

It shall be possible to create sub-tasks in such a way design-related tasks, i.e., "feature", can be associated with their corresponding higher level specification-task i.e., "spec". The "spec" tasks will have to match the specification requirements defined in the ROC SSS document.



#### 10.1.1.2.4 RSS release functionalities management

The expected functionalities for each RSS release will have to be detailed in the SDP.

In same time, the GM shall also report into the dedicated dashboard on the ROC Wiki, the list of expected functionalities for each RSS release, w.r.t. to the specification requirements defined in the RSSS. The the specifications shall be labelled as "low", "medium", "high" and "critical" for each of the releases. The GM shall ensure that the dashboard is accessible to the ROC developers and that it is consistent with the priority of development decided during the sprints.

Besides, all of the RSSS specification requirements will have to be fulfilled in the latest release.

The main functionalities for each release will have also to be visible in the ROC planning file, in order to monitor the progress and possible delays w.r.t. to the project planning.

#### 10.1.2 RPW Calibration Software (RCS) development approach

The RCS will have to be delivered to the ROC by the RPW Lead CoI teams in charge. The organization, schedule and expected interfaces and environments are presented in the SDP.

However, the GM will have to ensure the current status of the RCS development and delivery, including the data products definition, is reported into the ROC planning file.

Additionally, the GM shall provide a dedicated dashboard in the ROC Wiki, which allow the RCS teams to have user-friendly interface to follow the RCS development activities.

Especially, the GM will use this dashboard during the dedicated RCS telecons to monitor the status, the actions-items and possible anomalies.

# **10.2ROC software validation approach**

The ROC validation strategy shall be presented into the "ROC Software System Validation Plan" (SVP) document.

The SVP shall at least provide:

- The list of compatibility, integration and validation tests to be performed to ensure the validation of the ROC software system
- A description of the validation environment and configuration
- For each test, the reason, the procedures, the person in charge, the people involved, and the expected results and reports
- A schedule of the tests during the validation campaign

# **10.3ROC engineering conventions and rules**

In addition to the ROC SPAP, the engineering conventions concerning the ROC project shall be listed into a dedicated REG [RD5]. The REG shall help the ROC team to ensure the quality and homogeneity of the software development and application, providing standard rules and procedures.

Any additional rules and procedures that could concern external users should be reported into an extra "ROC Engineering Guidelines for External Users" (REGU) document [RD6].



- 53 / 54 -

# 11 LIST OF TBC/TBD/TBWS

TBC/TBD/TBW							
Reference/Page/Location	Description	Туре	Status				



- 54 / 54 -

# **12 DISTRIBUTION LIST**

LISTS	Tech_LESIA
See Contents lists in "Baghera Web":	Tech_MEB
Project's informations / Project's actors / RPW_actors.xls	Tech_RPW
and tab with the name of the list	[Lead-]Cols
or NAMES below	Science-Cols

#### INTERNAL

		LESIA CNRS		
LESIA				
CNRS				

#### EXTERNAL (To modify if necessary)

	C. FIACHETTI		J.BRINEK
	C. LAFFAYE		P.HELLINGER
	R.LLORCA-CEJUDO	ASI/CSRC	D.HERCIK
	E.LOURME		P.TRAVNICEK
CNES	M-O. MARCHE		J.BASE
	E.GUILHEM		J. CHUM
	J.PANH		I. KOLMASOVA
	<b>B.PONTET</b>	IAP	O.SANTOLIK
			J. SOUCEK
			L.UHLIR
	L. BYLANDER		G.LAKY
	C.CULLY		T.OSWALD
IDFII	A.ERIKSSON	IWE	H. OTTACHER
	SE. JANSSON	1	H. RUCKER
	A.VAIVADS		M.SAMPL
			M. STELLER
	P. FERGEAU		T.CHUST
	G. JANNET		A. JEANDET
LPC2E	T.DUDOK de WIT		P.LEROY
	M. KRETZSCHMAR	LPP	M.MORLOT
	V. KRASNOSSELSKIKH		
SSL	S.BALE		