
	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	1	/	24	-	

CNRS-Observatoire de PARIS
Section de MEUDON – LESIA
5, place Jules Janssen
92195 Meudon Cedex – France

RPW Operation Centre

ROC Engineering Guidelines

ROC-GEN-SYS-NTT-00008-LES
Iss.01, Rev.03

Prepared	by:		 Function:		 Signature:		 Date	

Xavier	Bonnin	 RPW	Ground	Segment	
Project	Manager	 	 17/11/2017	

Verified	by:		 Function:	 Signature:		 Date	

Name	 Team	Member	#2	 	 Dd/mm/yyyy	

Approved	by:		 Function:	 Signature:		 Date	

Name	 Team	Member	#3	 	 Dd/mm/yyyy	

For	application:		 Function:	 Signature:		 Date	

Name	 Team	Member	#4	 	 Dd/mm/yyyy	

CLASSIFICATION	 PUBLIC	 RESTRICTED	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	2	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

Change Record

Issue	 Rev.	 Date	 Authors	 Modifications	

01	 00	 08/10/2015	 X.Bonnin	 First	release	

01	 01	 18/11/2015	 X.Bonnin	 Update	the	acronym	list.	
Modify	the	recommended	S/W	structure.	
Update	the	S/W	versioning	and	descriptor	
requirements.	

01	 02	 07/04/2016	 X.Bonnin	 Rename	main	sections	title	
Remove	requirement	sections	
Replace	SVN	guidelines	by	Git		

01	 03	 17/11/2017	 X.Bonnin	 Upgrade	references	and	S/W	integration	
procedure	

	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

Acronym List

Acronym	 Definition	

AIT	 Assembly	Integration	and	Test	

AIV	 Assembly	Integration	and	Validation	

ASCII	 American	Standard	Code	for	Information	
Interchange	

BIA	 BIAS	

CDF	 Common	Data	Format	

CoI	 Co-Investigator	
DS	 Data	Sets	

ESA	 European	Space	Agency	

ESAC	 European	Space	Astronomy	Centre	

GIGL	 Groupe	Informatique	Générale	du	LESIA	

	 	
IAGC	 International	Association	of	Geophysical	

Contractors	

ICD	 Interface	Control	Document	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	3	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

ID	 Identifier	

IOR	 Instrument	Operation	Request	

ISTP	 International	Solar	Terrestrial	Physics	

HK	 HouseKeeping	

LDAP	 Lightweight	Directory	Access	Protocol	

LESIA	 Laboratoire	d’Etudes	Spatiales	et	
d’Instrumentations	en	Astrophysiques	

MOC	 Mission	Operation	Centre	

NFS	 Network	File	System	

OS	 Operating	System	

PI	 Principal	Investigator	

PMP	 Project	Management	Plan	

ROC	 RPW	Operation	Centre	

RPW	 Radio	and	Plasma	Waves	instrument	

SGS	 Science	Ground	Segment	

SOC	 Science	Operation	Centre	

SVN	 SubVersioN	

TBC	 To	Be	Confirmed	

TBD	 To	Be	Determined	
TBW	 To	Be	Written	

URL	 Uniform	Resource	Locator	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	4	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

Table of Contents

1	 General .. 7	

1.1	 Scope of the Document .. 7	
1.2	 Applicable Documents .. 7	
1.3	 Reference Documents ... 7	
1.4	 About this document .. 9	

	 Access policy .. 9	1.4.1
	 Terminology .. 9	1.4.2

2	 Guidelines for the ROC Software System (RSS) 10	
2.1	 RSS environment convention .. 10	

	 Usage and accessibility of the ROC servers ... 10	2.1.1
	 Python software specific convention ... 10	2.1.2

2.2	 RSS software general convention .. 10	
	 Software identification ... 10	2.2.1
	 Software versioning ... 10	2.2.2
	 Software testing/debugging ... 11	2.2.3

2.3	 Software organization convention ... 11	
	 Software structure tree .. 11	2.3.1
	 Context files .. 14	2.3.2
	 ROC S/W descriptor file .. 14	2.3.1
	 The S/W root directory naming ... 14	2.3.2

2.4	 ROC software life-cycle convention ... 14	
	 ROC software release ... 14	2.4.1
	 Software storage on the ROC servers .. 15	2.4.2
	 ROC Software tests and validation ... 15	2.4.3
	 Software integration tests and validation .. 15	2.4.4
	 Software deployment on the ROC servers .. 16	2.4.5
	 Software execution .. 17	2.4.6
	 Software failures / warnings .. 17	2.4.7
	 Software maintenance / upgrades .. 17	2.4.8
	 Software calling ... 17	2.4.9

2.5	 Convention related to the RPW calibration software ... 17	
3	 Guidelines for the ROC data products ... 17	

3.1	 General convention ... 17	
	 Data identification .. 17	3.1.1
	 Data versioning convention ... 18	3.1.2
	 Data access policy .. 18	3.1.3

3.2	 Data file formats & organization convention .. 18	
4	 Guidelines for the ROC pipelines ... 18	

4.1	 Pipeline general convention .. 18	
	 ROC pipeline identification .. 18	4.1.1
	 ROC pipeline environment .. 19	4.1.2
	 ROC pipeline instance naming .. 19	4.1.3
	 ROC pipeline versioning ... 19	4.1.4

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	5	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

4.2	 Pipeline software unit execution ... 19	
4.3	 Pipeline validation procedures .. 19	

5	 Guidelines for the ROC databases ... 20	
5.1	 Database convention ... 20	

	 ROC database identification ... 20	5.1.1
	 ROC database versioning ... 20	5.1.2
	 ROC database naming .. 20	5.1.1

6	 Guidelines for the RPW operation support software 20	
7	 Guidelines for the ROC project management and development tools .. 21	

7.1	 ROC project management tools .. 21	
7.2	 Team collaboration tools .. 21	

	 ROC issue tracker tool .. 21	7.2.1
	 ROC Git repositories ... 21	7.2.2
	 ROC Wiki pages at LESIA .. 22	7.2.3

7.3	 ROC documentation support software guidelines ... 22	
	 ROC document system manager tools ... 22	7.3.1
	 ROC document templates ... 22	7.3.2
	 ROC documentation Versioning .. 22	7.3.3
	 ROC Software development documentation ... 22	7.3.4

8	 List of TBC/TBD/TBWs .. 23	
9	 Distribution list .. 24	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	6	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

List of figures

Figure 1. Recommended S/W directory structure. ... 13	
Figure 2. S/W integration principle. ... 16	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	7	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

1 GENERAL

1.1 Scope of the Document
This document addresses guidelines related to the software engineering activities of the RPW
Operation Centre (ROC) [RD1]. Its main goal is to help the ROC developer team to:

• Ensure the efficiency and homogeneity of the software development, validation and
application.

• Define common rules to optimize collaboration between

• Optimize the software delivery and deployment

• Ensure the required documentation is delivered with software
The convention concerning external software to be run at ROC - such as RPW Calibration
Software (RCS) – are listed in the ROC Engineering Guidelines for External Users document
[RD3].
The present document should be read in complement to the ROC Software Product Assurance
Plan (SPAP) [RD8].

1.2 Applicable Documents
This document responds to the requirements of the documents listed in the following table:

Mark	 Reference/Iss/Rev	 Title	of	the	document	 Authors	 Date	

AD1 ROC-GEN-OTH-
NTT-00045-LES/1/0

ROC Project Glossary of terms X.Bonnin 24/01/201
7

AD2

1.3 Reference Documents
This document is based on the documents listed in the following table:

Mark	 Reference/Iss/Rev	 Title	of	the	document	 Authors	 Date	

RD1
ROC-GEN-SYS-
PLN-00002-LES/1/4

ROC Concept and
Implementation Requirements
Document (CIRD)

Y.de
Conchy

17/11/201
7

RD2
ROC-GEN-SYS-
PLN-00015-
LES/02/03

ROC Software Development Plan
(SDP)

X.Bonnin 17/11/201
7

RD3 ROC-GEN-SYS-
NTT-00019-LES/2/0

ROC Engineering Guidelines for
External Users (REGU)

X.Bonnin 17/11/201
7

RD4 ROC-PRO-DAT-
NTT-00006-LES/1/1

RPW Data Products (RDP) X.Bonnin 17/11/201
7

RD5
ROC-TST-GSE-NTT-
00017-LES/02/01

Data format and metadata
definitions for the ROC-SGSE
data (DFDRD)

X.Bonnin 14/10/201
6

RD6 ROC-PRO-PIP-ICD-
00037-LES/1/1

RPW Calibration Software ICD
(RCS ICD)

M.Duarte
X.Bonnin

17/11/201
7

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	8	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

RD7 Deleted

RD8 ROC-GEN-MGT-
QAD-00033/1/1

ROC Software Product
Assurance Plan (SPAP)

S.Papais 07/11/201
7

RD9 https://git-scm.com/ Git – fast-version-control Git Team 09/11/201
6

RD10
http://nvie.com/posts/a
-successful-git-
branching-model/

A successful Git branching
model

V. Driessen 05/01/201
0

RD11 ROC-GEN-MGT-
PLN-00013-LES/1/4

ROC Project Management Plan
(PMP)

X.Bonnin 17/11/201
7

RD12

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	9	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

1.4 About this document
 Access policy 1.4.1

This document must be accessible without any restriction to the teams involved in the RPW
ground segment activities. Any other access requests to the document must be addressed to
the ROC team for acceptance.
Any modification of this document must be approved by the RPW Ground Segment
Project Manager before publication.

 Terminology 1.4.2

In the framework of this document:

• The data processing and operation definitions refer to all of the procedures, software
(S/W), data and documentations required to produce the complete ROC data sets, and
to perform the instrument operations during the in-flight mission.

• The ROC project encompasses all of the activities to be supervised by the ROC.
Except if it is explicitly mentioned in the table below, the terms definitions provided in the
document [AD1] are applicable.

Name	 Definition	

Table 1. Terminology.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	10	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

2 GUIDELINES FOR THE ROC SOFTWARE SYSTEM (RSS)
The guidelines in this section concern hardware and software relative to the ROC Software
System (RSS).

2.1 RSS environment convention
 Usage and accessibility of the ROC servers 2.1.1

All of the roc servers must only by accessible with read-write privileges via the SSH protocol,
from the Observatoire de Paris intranet and to authorized users.
All of the roc data disks must only by accessible using a NFS-like mounting system from the
roc servers. Some parts of the disks can also be visible from Internet but always in read-only
mode.

The operation, low and web servers must be used for operations, data productions and
visualizations only. It must not be used for developments and must be accessible by the ROC
team only.
The ROC team must ensure that the development and operation servers have the same
hardware and software environment.
The ROC team must provide a dedicated space on its development server to the people
involved in the RPW ground segment activities. The access must be only possible from the
Observatoire de Paris intranet, and through a SSH using a LDAP user account delivered by
the GIGL on the ROC team demand. By default, users must be not allowed to read/write
outside their space. The size allocated by the ROC team for each user space must be limited,
but can be extended on demand.
The ROC servers must not be used to store data produced by S/W. Data products, including
log files, shall be saved on the dedicated data disks, which have to be accessible from the
servers through NFS-like mounting systems.

 Python software specific convention 2.1.2
A virtual environment must be used to run each instance of a Python S/W on the ROC
servers. This rule must be applied for both producing and testing instances. It is highly
recommended to apply also this rule for software development.

2.2 RSS software general convention
 Software identification 2.2.1

All of the ROC S/W must be assigned a unique identifier (ID). This ROC S/W ID shall be a
string in capital letters (e.g., ‘RPL’). Only alphanumerical characters, hyphens and underscore
characters are authorized.

The ROC must be the only entity authorized to assign the S/W IDs.
 Software versioning 2.2.2

S/W version must be a unique number sequence identifier “X.Y.Z”, where “X” is an integer
indicating the release (major changes, not necessarily retro-compatible), “Y” is an integer
indicating the issue (minor changes, necessarily retro-compatible) and “Z” is an integer
indicating a revision (e.g., bug correction).

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	11	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

The first stable release of S/W must have its major number “X” equals to 1, its minor number
“Y” equals to 0 and its revision number “Z” equals to 0 (i.e., “1.0.0”).
S/W preliminary versions (e.g., alpha, beta, etc.) must have their version number “X” equals
to 0 and must not have a character as a suffix (“0.Y.Zb” for the 0.Y.Z beta version for
instance).

 Software testing/debugging 2.2.3
S/W must include a debug mode that allows ROC developer team to test the S/W possible
failures.
S/W must be able to produce a log file that reports the S/W activity.

S/W should also include unit testing to help ROC to

2.3 Software organization convention
 Software structure tree 2.3.1

There is no specific convention concerning the ROC S/W structure. Nevertheless, it should
contain at least the following items:

• The S/W source code files

• Any additional libraries required to compile and/or to run S/W

• Any script or program used to compile S/W (makefile or ant build file for instance).

• Any script or program used to run S/W, including executable binary files that shall be
runnable in the ROC servers.

• The corresponding documentation. Especially a user manual describing in details the
S/W in terms of organization, installation and use. This document must be compliant
with the ROC documentation convention.

For more clarity, it is recommended to apply the following conventions for the S/W directory
organization, providing:

• A /config directory that can be used to store configuration files loaded by S/W.

• A /doc directory containing the S/W documentation.

• A /data directory containing additional files to be read as input arguments by S/W
(e.g., master CDF binary files). This directory must not contain S/W data
inputs/outputs (e.g., TDS/LFR/THR Level 1 or Level 2 data files).

• A /lib directory containing additional libraries required to run S/W.

• A /scripts directory that can be used to store scripts or batch files used to setup, run or
manage S/W.

• A /src directory containing the S/W source code files. Note that in the case of a
Python package software, the name of the Python package can be used as a /src
directory.

• An optional /tools directory that can be used to provide any useful tool to test, debug,
validate and/or manage S/W.

• If S/W executable binary files are provided, they should be saved in a /bin directory.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	12	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

• If S/W is a Python package, the root directory must include a requirements.txt file, as
defined for pip tool usage.

The following context files must be saved into the S/W root directory:

• README.rst A reStructuredText format file providing general information
about S/W

• CHANGELOG.rst A reStructuredText format file providing history of
modifications of the S/W releases

In addition the following optional files could be added:

• howto.txt An ASCII format file providing instructions to run S/W

• install.txt An ASCII format file providing explanations on how to install
S/W

All of theses files shall be always up-to-date.

These context files are described in more details in the next sections.
Additions of any other directory or file are left to the S/W responsible initiative.

Figure 1 presents the minimal tree structure of the root directory, which is should be found for
a S/W running on a ROC server.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	13	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

Figure 1. Recommended S/W directory structure.

sw_root_d
ir

bin

config

data

doc

lib

scripts

src

tools

Context
files

Descriptor
file

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	14	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

 Context files 2.3.2

The README.rst file must provides at least information about:

• The purpose of S/W

• A description of the root directory content

• Limitations or caveats of S/W use

• A reference to a more complete documentation

• A contact of the person or team in charge

The CHANGELOG.rst file must provide a history of the S/W releases, including:

• The version of the releases

• The date of the releases

• The responsible of the releases

• A summary list of what has been changed since the previous release.
The howto.txt file should explain how to run S/W. The use of additional tools use can be also
described in this file.
The install.txt file should describe how to install S/W, including:

• The name and version of the languages and compilers to use.

• The name and version of additional libraries, and if possible where they can be
retrieved.

• Instructions on how to compile the S/W source code.

• If available, instructions on how to test that the installation has been done correctly.
 ROC S/W descriptor file 2.3.1

Any ROC S/W or POPPy plugin to be integrated into a ROC pipeline must be delivered with
a corresponding descriptor file named “roc_sw_descriptor.[id_of_pipeline].json”, where
[id_of_pipeline] is the identifier of the ROC pipeline. The format of this file must be JSON.
This file must be unique and placed in the S/W root directory for external S/W and in a
/config sub-directory for POPPY plugin. It must be always up-to-date.

 The S/W root directory naming 2.3.2
The name of the S/W root directory must contain alphanumeric, hyphen “-“ and underscore
“_” characters only.

2.4 ROC software life-cycle convention
This section describes all of the procedures to be applied concerning the delivery, storage,
deployment, development, integration, execution and maintenance of S/W to be run on the
ROC servers.

 ROC software release 2.4.1
The delivery procedure must comply with the following steps:

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	15	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

• Before delivery, the ROC team must ensure that the S/W has a unique ROC S/W ID.
This ID must be reported into the S/W descriptor file. This step is only required for the
first delivery.

• The delivery must be done via the ROC Gitlab server
Any software release must be delivered with a given version number.

 Software storage on the ROC servers 2.4.2
The root directory of the S/W run on the ROC servers must be archived in the dedicated ROC
Git repository following the conventions described in this document.
Note that a local copy of the Git repository is expected to be found also in a dedicated
directory on the ROC servers.
The path of this local repository must as much as possible remain unchanged, even if a new
version is deployed.

 ROC Software tests and validation 2.4.3

The tests of S/W must always be performed first on the roc development server, before
integration.

For major software on Gitlab (i.e., ROC-SGSE, RODP, MUSIC, LLVM), Jenkins tool shall
be used to perform continuous integration during the development.

 Software integration tests and validation 2.4.4
The S/W integration tests must be performed on the roc development server.

The S/W major integration tests and validations shall be reported into a dedicated issue in the
Gitlab issue tracker tool.

Before being integrated into a given ROC production pipeline any new S/W release shall fully
complete the following steps:

Any S/W shall be individually tested and validated by the person in charge in her/his dev.
environment, before the integration processes.

Once S/W has been successfully tested and validated, the person in charge shall perform a
merge request into the corresponding develop branch of the Git repository.

Then, The S/W shall be tested and validated within the testing and preproduction
environments, respectively on the development and the production servers.

If the S/W integration is validated, S/W can be merged and tagged into the master branch of
the Git repository by the person in charge. Finally the local copy of the S/W master branch
can be pulled in the production pipeline by the person in charge.
Figure 2 summarizes the integration steps.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	16	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

Figure 2. S/W integration principle.

 Software deployment on the ROC servers 2.4.5
Only people from the identified ROC system administrators are authorized to deploy S/W on
a production server. Other people can ask for a dedicated account in the development server
to test their S/W compilation and execution in the ROC programming environment.

Any S/W deployment on the development server shall be performed in the following order:
1. Once a new version ‘X.Y.Z’ of S/W is available in the dedicated Git repository, then

the administrator in charge of deploying S/W on the ROC production server shall be
informed.

2. This new version is then downloaded on the development server updating the local
SVN repository only.

3. The integration of the new S/W release into the development or integration test
pipeline shall then follow the procedure described in the previous section.

Any S/W deployment on the production server shall be performed in the following order:
1. Once a new version ‘X.Y.Z’ of S/W has been tested and validated on the integration

server, an update of the local SVN repository can be done on the production server to
retrieve this version.

Deploy and run S/W into the
test pipeline in the
development server

New S/W release is
merged into the

develop branch of the
Git repository

Does S/W run
without error?

Deploy and run S/W into the
preproduction pipeline in the

production server

Is the error due to
S/W?

Person in charge alerts
other developers to fix the

issue
Person in charge fixes the

error

NOYES

Does S/W run
without error?

Person in charge fixes the
error

Merge develop branch into
the master branch and tag

the commit

NO YES

YESNO

Deploy S/W into the
production pipeline in the

production server

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	17	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

2. The integration of the new S/W release into the production pipeline shall then follow
the procedure described in the previous section.

 Software execution 2.4.6

S/W execution in the production pipelines shall be as much as possible automated with a
given cadence.

 Software failures / warnings 2.4.7
Any S/W error or warning shall be automatically archived and reported to the users using the
dedicated modules of the pipeline.

 Software maintenance / upgrades 2.4.8

Opening a dedicated issue in the ROC Gitlab server shall start any S/W bug or issue
resolution.

Any S/W upgrade shall be considered as a new release with its own tuple of (version number,
release date, person in charge).

As any new release, the integration of a S/W upgrade shall be tested and validated by the
ROC team.

All support content including documentations, context and descriptor files shall be up-to-date
with the upgraded S/W release.

 Software calling 2.4.9
This section lists all of the requirements concerning the S/W calling.

S/W input keywords shall be callable using the two following formats only:

• A short format composed of one letter preceded by the hyphen prefix (e.g, “-v”, “-h”).

• A long format composed of a word preceded by the double hyphen prefix (e.g., “--
version", “--help").

S/W input arguments shall at least contain the following keywords:

• ‘-h, --help’, which returns the help of the program.

• ‘-v, --version’, which returns information about the current release of the program
(i.e., version number, release date, person in charge)

2.5 Convention related to the RPW calibration software
The convention concerning the RPW calibration S/W is defined in the “ROC Engineering
Guidelines for External Users” document (REGU) [RD3].

3 GUIDELINES FOR THE ROC DATA PRODUCTS

3.1 General convention
 Data identification 3.1.1

Any data set (DS) produced by the ROC must be assigned a unique identifier (ID). This DS
ID must be a string in capital letters.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	18	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

The ID name must be composed of a tuple of three items of string type separated by
underscore characters. The first item must correspond to the corresponding “Source_name”
attribute value. The second item must indicate the “level” attribute value of the dataset. The
third item must provide the “Descriptor” attribute value of the dataset. It can contain sub-
strings separated by hyphens. It must be explicit enough to fully identify the data set (e.g.,
“RPW-TDS-BURST-RSWF” for Regular Snapshot Waveform level 1 data in burst mode for
instance).

The ROC must be the only entity authorized to assign the DS IDs.
The ROC must ensure the integrity and validity of the DS ID listing.

 Data versioning convention 3.1.2
The data file versioning must be compliant with the conventions defined in the “RPW Data
Products” and “Data format and metadata definitions for the ROC-SGSE data” documents.

 Data access policy 3.1.3

The ROC team must ensure an access to its RPW data file archive, including TM/TC packet
data, HK, ancillary, and quick-look files, to the RPW and to the Solar Orbiter consortium.
Two layers of accessibility mudt be planned:

• A restricted access for data products used only inside the RPW consortium for S/W
testing, on-ground tests and data processing validation.

• A public access for final data products to be delivered to the ESAC archive centre.
Access to the restricted area can be also envisaged for specific users such as other
Solar Orbiter instrument teams. Demands will have to be addressed to the ROC team
for acceptation.

3.2 Data file formats & organization convention
The RPW on-ground data format must be compliant with the conventions defined in the
“ROC-TST-GSE-SPC-00017-LES” document [RD5].
The format of the RPW data produced during the Solar Orbiter mission must be compliant
with the conventions defined in the “RPW Data Products” (RDP) document.

4 GUIDELINES FOR THE ROC PIPELINES

4.1 Pipeline general convention
 ROC pipeline identification 4.1.1

Each ROC pipeline must be assigned a unique identifier (ID). This ID must be a 4-characters
string, containing alphanumeric in upper case only. Hyphens and underscores can be used as a
separator if required.

Here is the list of IDs for the main pipelines:

• “RGTS” for the ROC-SGSE pipeline

• “RODP” for the ROC Operations and Data Pipeline (RODP)

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	19	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

 ROC pipeline environment 4.1.2

Each pipeline must be executed on a dedicated environment. This environment must be
completely isolated from the others to avoid possible ambiguity. Especially, each pipeline
must:

• Have its own instance name, which must be unique on a given server

• Have its own database

• Generate its own data products, which must be saved in separated directories with the
associated access privileges.

• Be installed on a specific Python virtual environment. There must be one instance by
virtual environment.

 ROC pipeline instance naming 4.1.3

There can be several instances of a ROC pipeline, required for different purposes (e.g,
dev/test instances, prod. instance, etc.) or installed on different servers (e.g., roc-dev, roc,
laptop, etc.).
The name of the instance must:

• Be unique

• Contain only alphanumerical characters and underscore(s)

• Do not exceed 64 characters

• Must be the same than the name of the virtual environment
The name should be explicit enough to identify the pipeline and its function.

 ROC pipeline versioning 4.1.4
The pipeline version must be a unique number sequence identifier “X.Y.Z”, where “X” is an
integer indicating the release (major changes), “Y” is an integer indicating an issue (minor
changes) and “Z” is an integer indicating a revision (e.g., bug correction).

4.2 Pipeline software unit execution
ROC pipelines must manage the S/W executions using jobs. Each S/W execution shall
generate a new job identified by a Universal Unique Identifier (UUID). The list of executed
jobs must be stored in a dedicated table.

4.3 Pipeline validation procedures
Depending on the stage of development, each pipeline can be found in one of the three
following phases:

• A development state, which means that the pipeline is unstable and must be used
for development purposes only. Data produced in this phase are unreliable and
must not be distributed at all. There can be several instances of the dev. pipelines,
running on the roc-dev.obspm.fr server.

• A preproduction state, which means that the pipeline can be unstable and must be
used to test and validate new integrations only. Data produced in this phase are
potentially unreliable and must be only distributed to the RPW team for testing.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	20	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

There must be only one instance of the preproduction pipeline, running on the
roc.obspm.fr server, but on a dedicated environment.

• A production state, which means that the pipeline is fully operational, stable and
ready to be used to produce deliverable data. There must be only one instance of
the production pipeline running on the roc.obspm.fr server on a dedicated
environment.

Notes:

• All of the pipelines must pass by the development then preproduction states before
being fully operational, including for updates.

• A backup pipeline instance might be deployed on both the roc-dev.obspm.fr and
roc.obspm.fr servers, in the case where the production pipeline is crashed.

• Each pipeline comes with its own front-end and tools that allow to visualize and
validate data products. Additional tools should be also developed to help ROC to
maintain their production pipelines always operational.

5 GUIDELINES FOR THE ROC DATABASES

5.1 Database convention
 ROC database identification 5.1.1

Any database must be assigned a unique ID. This ID must be a uppercase unique 3-characters
name preceded by the “ROC-“ prefix (e.g., “ROC-MDB”, ‘ROC-TDB”).

This ID must be used to identify the database in the system.
 ROC database versioning 5.1.2

The database version must be a unique number sequence identifier “X.Y.Z”, where “X” is an
integer indicating the release (major changes), “Y” is an integer indicating an issue (minor
changes) and “Z” is an integer indicating a revision (e.g., bug correction).

 ROC database naming 5.1.1

The name of the ROC databases must be explicit enough to identify the purpose and the
function of the database (e.g., “roc_mdb_prod” for the ROC Mission database prod. version).

Name of the databases, schemas, tables and columns must contain alphanumerical characters
in lower-case only. Only the underscore character “_” can be used as a separator if required.

Name of the first column of a given table “tablename” containing the primary key must be the
name of the table preceded by the “id_” prefix (e.g. “id_tablename”).

Name of a column containing a foreign key must be the name of the column it refers to – for
instance “colname”, followed by the suffix “_id” (e.g., “colname_id”). If the referenced
column is primary key (e.g., “id_colname”) then the prefix “id_” must be removed (e.g.,
“colname_id” and not “colname_id”).

6 GUIDELINES FOR THE RPW OPERATION SUPPORT SOFTWARE
TBW

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	21	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

7 GUIDELINES FOR THE ROC PROJECT MANAGEMENT AND
DEVELOPMENT TOOLS

7.1 ROC project management tools
The list of the key personnel and Institutes involved in the ROC project are given in [RD1].

Only the following people are authorized to modify the project planning using the dedicated
management tool:

• RPW Principal Investigator

• RPW Ground Segment Project Manager

• RPW Ground Segment Deputy Project Manager

7.2 Team collaboration tools
The team collaboration tools are S/W or services that allow teams involved in the ROC
software development activities to collaborate.
The collaboration tools available are described in details in the ROC Software Development
Plan (SDP) [RD2].

 ROC issue tracker tool 7.2.1

The JIRA issue tracker tool shall be used by the ROC to:

• Manage the project

• Follow the tasks related to the RPW operations preparation

• Organize the reviews and key points.

• Report activities about the ground tests.
If an issue concerns software, its version shall be given as a label.
The Gitlab issue tracker tool shall be only used by the ROC developer team to follow the
ROC software development activities (sprint issues, spec., new feature, bugs, etc.).
Any issue must only be closed if the corresponding task is fully completed (e.g., a bug is
fixed, a S/W integration succeeds, etc.).

 ROC Git repositories 7.2.2

The ROC team must uses Git [RD9] as a revision control system to store the S/W source files
related to ROC Software System (RSS).

The ROC team must apply the Git branching model of V.Driessen [RD10] on its Git
repositories storing software. Especially it means that any ROC software Git repository must
contain at least the two following branches:

• A “master” branch used to store the software releases only (i.e., no development or
testing versions). Especially, the “master” branch must only contain tagged version of
the S/W releases as explained below.

• A “develop” branch used to as a main branch for the developments.
In addition, the ROC developers should apply the following rules on their local repositories:

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	22	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

• Create and use a new “feature/” type branch each time a new feature must be
developed

• Create and use a new “release/” type branch before each S/W release
The ROC developers can use the “git-flow” tool (AVH edition) to work with Git.
In practice the ROC developer teams should never use the “master” branch. Committing on
the “master” branch should be only performed by a single identified person. This person
should be the only one in charge of performing the S/W release of a new stable version in the
“master” branch for a given repository.
The tag name in the “master” branch must be the software version “X.Y.Z” as defined in the
section 2.2.2. In the special case where the repository requires modifications that do not
concern the software it-self, the tag shall be named as “X.Y.Z.K”, where “X.Y.Z” is the
software version and “K” is an additional incremental integer starting at “1”. For instance, in
the following sequence of tags: [“1.2.1” –> “1.2.1.1” --> “1.2.1.2” --> “1.3.0”], the software
was only modified in the first and last commits.
Any Git commit must be commented to keep a track of the modification history.

 ROC Wiki pages at LESIA 7.2.3
The ROC team should use the dedicated ROC Wiki page page to share information inside the
ROC project.

7.3 ROC documentation support software guidelines
 ROC document system manager tools 7.3.1

The ROC documents officially released must be archived using the ROC COTRANET
document system manager tool.

 ROC document templates 7.3.2
Every new document written in the framework of the project must use the dedicated ROC
templates.
There are currently two template types:

• For Microsoft Word documents (i.e., .dotx)

• For Latex documents
The templates must be made available from the /Resources/Templates folder of the
“RocDocs” Git repository.

 ROC documentation Versioning 7.3.3
The ROC documentation versioning must follow the RPW documentation convention defined
in the PMP [RD11].

 ROC Software development documentation 7.3.4

See PMP for the list of documents related to the software development.

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	23	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

8 LIST OF TBC/TBD/TBWS
TBC/TBD/TBW	

Reference/Page/Location	 Description	 Type	 Status	

	

	
ROC	Engineering	Guidelines	

Ref:	ROC-GEN-SYS-NTT-00008-LES		
Issue:	01	
Revision:	03	
Date:	17/11/2017	
																																													-	24	/	24	-	

ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).docx

9 DISTRIBUTION LIST

LISTS
See Contents lists in “Baghera Web”:
 Project’s informations / Project’s actors / RPW_actors.xls

 and tab with the name of the list
 or NAMES below

 Tech_LESIA

 Tech_MEB

 Tech_RPW

 [Lead-]CoIs

 Science-CoIs

INTERNAL		

LESIA

CNRS

LESIA

CNRS

EXTERNAL	(To	modify	if	necessary)	

CNES

 C. FIACHETTI

AsI/CSRC

 J.BRINEK

 C. LAFFAYE P.HELLINGER

 R.LLORCA-CEJUDO D.HERCIK

 E.LOURME P.TRAVNICEK

 M-O. MARCHE

IAP

 J.BASE

 E.GUILHEM J. CHUM

 J.PANH I. KOLMASOVA

 B.PONTET O.SANTOLIK

 J. SOUCEK

 L.UHLIR

IRFU

 L. BYLANDER

IWF

 G.LAKY

 C.CULLY T.OSWALD

 A.ERIKSSON H. OTTACHER

 SE.JANSSON H. RUCKER

 A.VAIVADS M.SAMPL

 M. STELLER

LPC2E

 P. FERGEAU

LPP

 T.CHUST

 G. JANNET A. JEANDET

 T.DUDOK de WIT P.LEROY

 M. KRETZSCHMAR M.MORLOT

 V. KRASNOSSELSKIKH

SSL S.BALE

