

RPW Operation Centre

ROC Software Development Plan

ROC-GEN-SYS-PLN-00015-LES Iss.02, Rev.03

Prepared by:	Function:	Signature:	Date
Xavier Bonnin	RPW Ground Segment Project Manager		17/11/2017
Verified by:	Function:	Signature:	Date
Desi Raulin Stéphane Papais	RPW Ground Segment Development Support ROC Software Product Assurance Manager		Dd/mm/yyyy
Approved by:	Function:	Signature:	Date
Name	Team Member #3		Dd/mm/yyyy
For application:	Function:	Signature:	Date
Name	Team Member #4		Dd/mm/yyyy

CLASSIFICATION

PUBLIC 🛛

RESTRICTED

CNRS-Observatoire de PARIS Section de MEUDON – LESIA 5, place Jules Janssen 92195 Meudon Cedex – France

Laboratoire d'Études Spatiales et d'Instrumentation en Astrophysique

Plan

Change Record

Issue	Rev.	Date	Authors	Modifications	
00	00	23/12/2014	Xavier Bonnin	First draft	
00	01	17/02/2015	Xavier Bonnin	Second draft	
00	02	25/06/2015	Xavier Bonnin	Third draft	
01	00	30/06/2015	Xavier Bonnin	First release	
01	01	15/10/2015	Xavier Bonnin	Update the software responsibilities and deliveries	
02	01	22/07/2016	Xavier Bonnin	Major updates:	
				Re-organize sections to be consistent with ECSS-E-ST-40C(6March2009).	
02	02	27/09/2016	Xavier Bonnin	Complete missing sections	
02	03	17/11/2017	Xavier Bonnin	- Add information about continuous integration tools (Jenkins and gitlab)	
				 Describe software environments at LESIA and ESOC 	
				 Update software product overview and delivery schedule (with RSS release) 	

Acronym List

Acronym	Definition
AIT	Assembly, Integration Tests
AIV	Assembly, Integration Validations
ΑΡΙ	Application Programming Interface
CDF	Common Data Format
CIRD	Concept and Implementation Requirements Document
CNES	Centre National d'Etudes Spatiales
Col	Co-Investigator
СР	Cruise Phase
DAS	DPU Application Software
DBS	DPU Boot Software
DPS	Data Processing System
DPU	Data Processing Unit

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

- 3 / 56 -

ECSS	European Cooperation for Space Standardization
EDDS	EGOS Data Dissemination System
E-FECS	Enhanced-Flight Events Communications Skeleton
EM	Engineering Model
ESA	European Space Agency
ESAC	European Space Astronomy Centre
ESOC	European Space Operation Centre
Faust	Flight Operation Request Editor
FCT	Flight Control Team
Figaro	Flight Operation Procedure Editor
FM	Flight Model
FOP	Flight Operation Plan
GIGL	Groupe Informatique Générale du LESIA
GSE	Ground Support Equipment
GUI	Graphical User Interface
HF	High Frequency
HFR	High Frequency Receiver
IAP	Institute of Atmospheric Physics
ICD	Interface Control Document
IDB	Instrument Database
IDL	Interactive Data Language
IOR	Instrument Operation Request
IRF	Institutet för rymdfysik
IT	Instrument Team
I/O	Input/Output
JSON	JavaScript Object Notation
LESIA	Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique
LF	Low Frequency
LFR	Low Frequency Receiver
LL	Low Latency
LPC2E	Laboratoire de Physique et Chimie de l'Environnement et de l'Espace
LPP	Laboratoire de Physique des Plasmas
MADAWG	Modeling And Data Analysis Working Group
MCS	Monitoring and Control System
MDOR	Memory Direct Operation Request

- 4 / 56 -

MEB	Main Electronic Box
MIB	Mission Information Base
MOC	Mission Operation Centre
MUsIC	MCS User Interfaces
NECP	Near Earth Commissioning Phase
NP	Nominal Phase
OPera	Operation Planning Interface
ORM	Object Relational Mapping
OS	Operating System
PDOR	Payload Direct Operation Request
PFM	Preliminary Flight Model
PI	Principal Investigator
РМР	Project Management Plan
РОРРу	Plugin-Oriented Pipeline for Python
РА	Product Assurance
QA	Quality Assurance
RCS	RPW Calibration Software
RDBMS	Relational Database Management System
REG	ROC Engineering Guidelines
REGU	ROC Engineering Guidelines for External Users
RFP	RPW Flight Procedure
RGS	RPW Ground Segment
ROC	RPW Operation Centre
RODS	ROC Operation and Data System
ROT	RPW Operation Toolkit
RPL	RPW Packet parsing Library
RPW	Radio and Plasma Waves
RSS	ROC Software System
SAP	Science Activity Plan
SBM	Selected Burst Mode
SCM	Search-Coil Magnetometer
SDD	Software Design Document
SDDS	Solar Orbiter EDDS
SDP	Software Development Plan
SGSE	Software Ground Support Equipment

- 5 / 56 -

SISSI	SBM Interactive Selection Software Interface
SOC	Science Operation Centre
SolO	Solar Orbiter
SOOP	Solar Orbiter Operation Plan
SOV	System Operations Validation
SRDB	Spacecraft Reference Database
SSD	Software Specification Document
SSH	Secure SHell
SSMM	State Solid Mass Memory
SSS	Software System Specification
SUM	Software User Manual
SVP	System Validation Plan
SVT	System Validation Tests
S/C	Spacecraft
S/W	Software
ТВС	To Be Confirmed
TBD	To Be Defined
TBW	To Be Written
тс	Telecommand
TDS	Time Domain Sampler
THR	Thermal Noise and High Frequency Receivers
TM	Telemetry
ТМС	TM Corridor
TNR	Thermal Noise Receiver
TV	TM/TC Viewer
URD	User Requirement Document
WF	Waveform
XML	eXtended Markup Language

Plan

- 6 / 56 -

Table of Contents

	Ge	ene	ral	9
	1.1	Sco	pe of the Document	.9
	1.2	Арр	licable Documents	.9
	1.3	Ref	erence Documents	10
	1.4	Abc	but this document	12
	1.4	4.1	Access policy	12
	1.4	4.2	Terminology	13
2	R	OC :	software products overview1	.3
	2.1	RO	C Software System (RSS)	13
	2.1	1.1	RSS product tree	13
	2.1	1.2	ROC Operations And Data System (ROADS)	14
	2.1	1.3	ROC Ground Support Equipment (GSE)	19 20
	2.2		Catabases	20
	2.2	2.1 2.2	ROC MISSION Database (MDB)	20 21
	2.2	2.2	Solar Orbiter Mission Information base (MiB)	21
	2.2	2.4	ROC-SGSE Test database (TDB)	21
	2.2	2.5	ROC MEB GSE database	21
	2.3	RO	C third-party software products	21
	2.3	3.1	The Plugin-Oriented Pipeline for Python (POPPy)	22
	2.3	3.2	RPW user software tools and services	22
	2.5	3.3 3.4	Project management software products	22 22
	2.3	3.5	Solar Orbiter Inter-instrument software products	23
	2.3	3.6	External collaboration software products	23
3	R	0C (data products overview2	2
	3.1	File	naming convention, data format and metadata definition	23
	3.1 3.2	File Dat	naming convention, data format and metadata definition	23 23
4	3.1 3.2	File Dat	naming convention, data format and metadata definition	23 23 23
4	3.1 3.2 R(4.1	File Dat OC s	naming convention, data format and metadata definition	23 23 23 25
4	3.1 3.2 R(4.1 4.2	File Dat DC Mas	naming convention, data format and metadata definition	23 23 25 25
4	3.1 3.2 R(4.1 4.2	File Dat DC Mas Ass 2 1	naming convention, data format and metadata definition	23 23 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.2	File Dat DC Mas Ass 2.1 2.2	naming convention, data format and metadata definitiona product suppliers and customers	23 23 25 25 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.2 4.2	File Dat DC Mas Ass 2.1 2.2 2.3	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.2 4.2 4.3	File Dat DC Mas Ass 2.1 2.2 2.3 Sof	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.2 4.2 4.3 4.3	File Dat OC 9 Mas 2.1 2.2 2.3 Sof Moi	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4	File Dat Dat Mas Ass 2.1 2.2 2.3 Soft Mor 4.1	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 R (4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4	File Dat Dat OC 9 Ass 2.1 2.2 2.3 Soft Mor 4.1 4.2	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 R(4.1 4.2 4.2 4.3 4.3 4.4 4.4 4.4	File Dat Dat Mas 2.1 2.2 2.3 Sof Moi 4.1 4.2 4.3	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25 25 25 25 27 27 27 28
4	3.1 3.2 R(4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4 4.4 4.4	File Dat Dat Mas Ass 2.1 2.2 2.3 Soff Mon 4.1 4.2 4.3 4.1	naming convention, data format and metadata definition a product suppliers and customers software management approach ster schedule umptions, dependencies and constraints Assumptions Dependencies Constraints tware development related risks nitoring and controlling mechanisms ROC software development tools ROC facilities access management approach	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4 4.4 4.4 4.5 4.5	File Dat Dat Mas 2.2 2.3 Sof 4.1 4.2 4.3 4.1 Sta	naming convention, data format and metadata definition a a product suppliers and customers a software management approach 2 ster schedule a umptions, dependencies and constraints a Dependencies a Constraints a tware development related risks a nitoring and controlling mechanisms a ROC software development tools a ROC facilities access management file a ROC data product management approach a fing plan a	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4 4.4 4.5 4.5 4.6	File Dat Dat Mas 2.1 2.2 2.3 Soff Moi 4.1 4.2 4.3 4.1 Star Soff	naming convention, data format and metadata definition a a product suppliers and customers a software management approach 2 ster schedule a umptions, dependencies and constraints 2 Assumptions 2 Dependencies 2 Constraints 3 Name development related risks 3 nitoring and controlling mechanisms 3 ROC software development tools 3 ROC facilities access management approach 3 ROC data product management approach 3 ffing plan 3	23 23 25 25 25 25 25 25 25 25 25 25 27 27 28 28 29 29 29
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.4 4.4 4.4 4.5 4.5 4.6 4.7	File Dat Dat Mas 2.1 2.2 2.3 Soff Moi 4.1 4.2 4.3 4.1 Sta' Sta' Sup	naming convention, data format and metadata definition	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.2 4.3 4.4 4.2 4.5 4.6 4.7 4.7	File Dat Dat Mas 2.1 2.2 2.3 Sof 4.1 4.2 4.3 4.1 Sta Sof Sup 7.1	naming convention, data format and metadata definition a a product suppliers and customers a software management approach 2 ster schedule a umptions, dependencies and constraints 2 Assumptions 2 Dependencies 2 Constraints 3 tware development related risks 3 nitoring and controlling mechanisms 3 ROC software development "sprint" mechanism 3 Software development tools 3 ROC facilities access management file 3 ROC data product management approach 3 ffing plan 3 tware procurement process 3 oplier management 3 RCS specific development plan 3	23 23 25 25 25 25 25 25 25 25 25 25 25 27 27 27 27 28 29 29 29 29
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.2 4.3 4.4 4.2 4.5 4.6 4.7 4.7 4.7 R (File Dat Dat CC & Ass 2.1 2.2 2.3 Soff Mor 4.1 4.2 4.3 4.1 Sta' Soff Sup 7.1 OC &	naming convention, data format and metadata definition a a product suppliers and customers a software management approach 2 ster schedule a umptions, dependencies and constraints 3 Assumptions 2 Dependencies 3 Constraints 3 tware development related risks 3 nitoring and controlling mechanisms 3 ROC software development "sprint" mechanism 3 Software development tools 3 ROC facilities access management file 3 ROC data product management approach 3 tware procurement process 3 software development plan 3	23 23 25 25 25 25 25 25 25 25 25 25 25 25 25
4	3.1 3.2 4.1 4.2 4.2 4.2 4.3 4.4 4.2 4.3 4.4 4.2 4.5 4.6 4.7 4.7 6.1	File Dat Dat CC & Ass 2.1 2.2 2.3 Sof 4.1 4.2 4.3 4.1 Sta Sof 5up 7.1 OC & Stra	naming convention, data format and metadata definition a a product suppliers and customers a software management approach 2 ster schedule a umptions, dependencies and constraints 2 Assumptions 2 Dependencies 2 Constraints 2 tware development related risks 3 nitoring and controlling mechanisms 3 ROC software development tools 3 ROC facilities access management file 3 ROC data product management approach 3 tware procurement process 3 policir management 3 actegy to the software development approach 3	23 23 25 25 25 25 25 25 25 25 25 25 25 27 27 28 29 29 29 29 29 29 29 29 29 29 29 29 29

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

ROC Software Development Plan

Ref: ROC-GEN-SYS-PLN-00015-LES Issue: 02 Revision: 03 Date: 17/11/2017

- 7 / 56 -

5.1.2	Software versioning convention	33
5.1.3	Software development configuration	33
5.1.4	ROC engineering validation plan	33
5.1.5	ROC software product assurance plan	33
5.2 RO	C software development life cycle	33
5.2.1	ROC software development life cycle	33
5.3 Sof	ftware engineering standards and techniques	. 35
5.3.1	ROC Python-based software engineering standards and techniques	35
5.3.2	ROC JavaScript-based software engineering standards and techniques	35
5.3.3	LLVM specific engineering standards and techniques	35
5.3.4	RCS specific engineering standards and techniques	35
5.4 Sof	ftware development, testing, validating and execution environments at LESIA	35
5.4.1	RSS operational infrastructure overview	35
5.4.1	RSS development, testing and validating infrastructure overview	36
5.4.2	ROC hardware equipment	37
5.4.3	ROC hardware communication interfaces at the LESIA site	40
5.4.4	Software environment	40
5.5 Sof	ftware development, testing, validating and execution environments at ESOC	. 44
5.5.1	RSS operational infrastructure overview	44
5.5.2	RSS development, testing and validating infrastructure overview	45
5.5.3	ROC hardware equipment	45
5.5.4	ROC hardware communication interfaces at the ESOC site	46
5.6 Sof	ftware documentation plan	. 46
5.6.1	General	46
5.6.2	Software documentation identification	46
5.6.3	Deliverable items	46
5.6.4	Software documentation standards	46
6 ROC	software delivery plan	47
6.1 RO 6.2 RO 6.2.1 6.2.2	C software development planning C software deliveries schedule RSS data package main releases schedule ROC software main deliveries schedule	47 47 47 47 49
7 List o	of TBC/TBD/TBWs	55
8 Distr	ibution list	56

- 8 / 56 -

List of figures

Figure 1. ROC Software System product tree	
Figure 2. ROC Operations And Data System (ROADS) software products	15
Figure 3. ROC Ground Support Equipment related software products.	19
Figure 4. ROC software development life cycle.	34
Figure 5. RSS infrastructure overview at LESIA	36
Figure 6. RSS infrastructure at ESOC.	44

List of tables

Table 1. Terminology	
Table 2. RODP plugins.	
Table 3. RPW Calibration Software (RCS)	
Table 4. Categories of ROC data products.	
Table 5. Categories of risk related to software development.	
Table 6. ROC dataset listing file columns	
Table 7. RCS validation tests schedule.	
Table 8. RCS documentation delivery schedule.	
Table 9. Expected technical documents during ROC software development life-cycle	
Table 10. ROC operating servers.	
Table 11. Technical accounts.	
Table 12. RSS software programming languages.	
Table 13. List of databases involved in the ROC activities.	
Table 14. List of RSS main software libraries.	
Table 15. Hardware equipment for MOC RSS.	
Table 16. RSS data package release main releases schedule.	49
Table 17. ROC software main deliveries schedule.	

1 GENERAL

1.1 Scope of the Document

This document presents the software development plan (SDP) of the RPW Operation Centre (ROC).

According to [RD26], the purpose of the SDP is "to describe the established management and development approach for the software items to be defined by a software supplier to set up a software project in accordance with the customer requirements".

The present document is a tailored version of the SDP as defined above, but covering all of the software units of the ROC software system (RSS).

This SDP addresses more specifically the needs to be foreseen in terms of:

- RSS development, validation and maintenance organisation and responsibilities
- RSS data production, validation and distribution organisation and responsibilities
- RSS-related management and collaboration tools
- RSS-related development approach, environment and integrated logistic support
- RSS-related identified risks and the expected mitigation processes

These needs must meet the requirements initially listed in the ROC Concept and Implementation Requirements Document (CIRD) [AD1] in terms of: technical developments, software tools, data format, and functional facilities to support the ROC science and operational activities. Nevertheless the content of the SDP is expected to follow the evolution of the RSS specification and design.

The SDP must comply with the approach described in the ROC Project Management Plan (PMP) [AD3] and the ROC Software Products Assurance Plan (SPAP) [AD4].

1.2 Applicable Documents

This document responds to the requirements of the documents listed in the following table:

Mark	Reference/Iss/Rev	Title of the document	Authors	Date
	ROC-GEN-SYS-PLN-	ROC Concept and Impelement	Yvonne	17/11/2017
	00002-LES/1/4	Requirements Document (CIRD)	de	
AD1			Conchy,	
			Xavier	
			Bonnin	
4.D2	ROC-GEN-OTH-	ROC Project Glossary of terms	Xavier	24/01/2017
AD2	N11-00045-LES/1/0		Bonnin	
	ROC-GEN-MGT-	ROC Project Management Plan	Yvonne	17/11/2017
	PLN-00026-LES/1/4	(PMP)	de	
AD3			Conchy	
			Xavier	
			Bonnin	
	ROC-GEN-MGT-	ROC Software Assurance /Product	Stephane	07/11/2017
AD4	QAD-00033-LES/1/1	Assurance Plan (SPAP)	Papais	

Plan

1.3 Reference Documents

This document is based on the documents listed in the following table:

Mark	Reference/Iss/Rev	Title of the document	Author s	Date
	SOLO-RPWSY-IF-	Experiment Interface Document	RPW	21/12/2012
RD1	55-	Part B (EID-B) for RPW	Team	
	CNES_0401(=EID- B).pdf/04/01			
	SOL.EST.RCD.0050/	Experiment Interface Document	Solar	03/08/2012
RD2	03/00	Part A (EID-A)	Orbiter	
			Team	
	RPW-PRO-DAT-	RPW Data Products	Xavier	17/11/2017
RD3	NTT-00006-		Bonnın	
	LES/01/01	Data format and matadata	Varian	14/10/2016
RD4	RPW-151-USE-N11-	definition for the POC SCSE	Ronnin	14/10/2016
	SOL SGS TN	Solar Orbiter Low Latency Data:	Anik de	10/00/2017
RD5	0003/1/2	Concept and Implementation	Groof	19/09/2017
	SOL-SGS-TN-	Metadata Definition for Solar	Solar	23/07/2015
	0009/2/2	Orbiter Science Data	Orhiter	25/07/2015
RD6			MADA	
			WG	
	SOL-SGS-ICD-	Data Producer to archive Interface	Luis	05/09/2014
RD7	0002_DPICD/0/2	Control Document	Sanche	
			Z	
	SOL-SGS-ICD-	Solar Orbiter Instrument Operation	Christo	13/03/2017
RD8	0003/1/0	Request Interface Control	pher	
		Document (IOR ICD)	Watson	
	SOL-SGS-ICD-	Solar Orbiter Interface Control	Andre	09/02/2017
RD9	0004/1/3	Document for Low Latency Data	W	
	SOL SCS TN	CDF files	Walsh	02/09/2017
RD10	SUL-SUS-IN-	SOC Engineering Guidelines for	Richard	03/08/2017
	SOL ESC IE	Solar Orbiter Data Delivery	Luca	10/00/2013
RD11	05011/1/0	Interface Control Document	Michie	10/09/2013
KD11	0.5011/1/0	Interface Control Document	nzi	
RD12		Deleted	1121	
	SOL-ESC-PL-	Solar Orbiter FOP Preparation Plan	B.	18/01/2017
RD13	10001/1/2	1	Sousa	
	SOL-ESC-TN-	Solar Orbiter Mission Planning	Ignacio	27/06/2014
KD14	12000/1/2	Concept (MPC)	Tanco	
	SOL-SGS-ICD-	Solar Orbiter Enhanced-Flight	Christo	31/10/2017
RD15	0006/1/2	Events Communications Skeletons	pher	
		Interface Control Document	Watson	
RD16	ROC-GEN-SYS-NTT-	ROC Engineering Guidelines	Xavier	17/11/2016
1010	00008-LES/1/3	(REG)	Bonnin	

-	11	/	56	-
---	----	---	----	---

2215	ROC-GEN-SYS-NTT-	ROC Engineering Guidelines for	Xavier	17/11/2017
RD17	00019-LES/2/0	External Users (REGU)	Bonnin	
	TN GSE-017/01/02	RPW MEB SGSE Science Data	Loïc	23/06/2015
RD18	-	Format	Guegen	
	ROC-TST-GSE-SUM-	ROC-SGSE User Manual	M.Duar	16/12/2016
RD19	00024-LES/1/1		te	
	SOL-SGS-0006-	Solar Orbiter Instrument Teams –	Nana	30/08/2017
DDOO	TS/1/0	SOC Test Specification	Bach,	
KD20		-	Chris	
			Watson	
	ROC-PRO-PIP-ICD-	RPW Calibration Software	Manuel	12/10/2017
BD21	00037-LES/1/1	Interface Control Document (RCS	Duarte,	
KD21		ICD)	Xavier	
			Bonnin	
PD22	ROC-TST-GSE-SPC-	ROC-SGSE Software Design	Xavier	15/04/2016
KD22	00004-LES/01/01	Document	Bonnin	
RD23	https://www.atlassian.	JIRA software	Atlassi	N/A
KD25	com/software/jira		an team	
	http://nvie.com/posts/a	A successful Git branching model	Vincent	05/01/2010
RD24	-successful-git-		Driesse	
	branching-model/		n	
	SOL-SGS-ICD-	Solar Orbiter Telemetry Corridor	Christo	14/03/2017
RD25	0007/1/0	Interface Control Document	pher J.	
			Watson	
RD26	ECSS-E-ST-	Space engineering: Software	ECSS	06/03/2016
	40C(6March2009)/3		team	
	SOL-ESC-RP-05500 -	Solar Orbiter: Consolidated Report	José	2012-10-12
RD27	Issue 3r1 20121012 -	on Mission Analysis	Manuel	
	Solar Orbiter CReMA		Sanche	
	Issue 3 KeV I		z Perez	2014 11 12
RD28	SOLO-KPWSY-PI-	RPW Instrument Calibration Plan	KPW	2014-11-12
	1235-CNES/01/00		teams	05/00/2016
DDOO	2A- SOL-ESC-HO-	Instrument Command Workshop,	1. I anco	05/09/2016
KD29	03014/1/1	esoc : Commanding Interface		
	LL ninalines at SOC	and Testing	Chris	06/07/2015
RD30	schodulo prty	LL-Pipennes(#SOC	Watson	00/07/2015
	POC TST CSE	Plugin Oriented Dinalina for	Manual	26/06/2016
DD21	KUC-151-USE-	Puthon (POPPu) framework User	Duorto	20/00/2010
KD31	SUM-00055-LLS/1/1	Manual	Duarte	
	https://www.diangonr	Diango	Diango	2016
	nups.//www.ujangopi	Djuligo	Softwar	2010
			SULWAI	
RD32	oject.com/		e	
RD32			e foundat	
RD32			e foundat ion	
RD32	https://docs.python.or	Creation of virtualenv	e foundat ion Python	2016
RD32	https://docs.python.or g/3/library/veny.html	Creation of virtualenv	e foundat ion Python softwar	2016
RD32 RD33	https://docs.python.or g/3/library/venv.html	Creation of virtualenv	e foundat ion Python softwar e	2016

- 12 / 56 -

			foundat ion	
RD34	https://docs.python.or g/3/install/	Installing Python modules (Legacy Version)	Python softwar e foundat ion	2016
RD35	Deleted			
RD36	ROC-GEN-SYS-SPC- 00026-LES/01/01	ROC Software System Specification (RSSS)	X.Bonn in	17/11/2017
RD37	ROC-GEN-SYS-SPC- 00036-LES/01/01	ROC Software System Design Document (RSSDD)	X.Bonn in, S.Lion	17/11/2017
RD38	SOL-ESC-IF- 10002/2/0	Solar Orbiter Instrument FOP Procedure Input Interface Control Document	D. Lakey	12/06/2014
RD39	ROC-GEN-SYS- NTT-00038- LES/01/02	ROC Mission Database Description Document (MDBDD)	X.Bonn in, Sonny Lion	24/11/2017
RD40	RPW-SYS-MEB- GSE-SPC-00125- LES/01/01	RPW MEB GSE Description	Loic Guegue n	26/11/2012
RD41	http://maser.lesia.obsp m.fr/?lang=en	Measuring Analyzing & Simulating Emissions in Radio frequencies	MASE R team	18/07/2017
RD42	https://jenkins.io/	Jenkins	Jenkins develop er team	18/07/2017
RD43	SOL-SGS-PL- 0009/2/0	Solar Orbiter Archive Plan	Pedro Osuna	01/09/2017
RD44	SOL-ESC-IF- 05010/1/2	Planning Interface Control Document	L. Michie nzi	07/2015
RD45	https://www.python.or g/dev/peps/pep-0008/	PEP 8 Style Guide for Python Code	Guido van Rossum , Barry Warsa w, Nick Coghla n	01/08/2013

1.4 About this document

1.4.1 Access policy

The present document is accessible without any restriction.

Any modification of this document must be approved by the RPW Ground Segment Project Manager (GSPM) before publication.

1.4.2 Terminology

All terms used in this document, and which are not listed in the table below must follow the definition in [AD2].

Name	Definition
External team/person/user	Team/person/user that does not belong to the ROC team at LESIA.
(POPPy) Plugin	A software unit designed to be used in the POPPy framework

Table 1. Terminology.

2 ROC SOFTWARE PRODUCTS OVERVIEW

2.1 ROC Software System (RSS)

2.1.1 RSS product tree

The ROC Software System (RSS) definition gathers all of the engineering systems required to reach the ROC functionalities defined in the CIRD. Figure 1 shows the RSS product tree, which is composed of two main systems:

- The ROC Ground Equipment Support (ROC GSE), which regroups the sub-systems in support to tests performed on-ground before and after the launch, namely: the ROC-SGSE and the SBM Algorithms Validation software (SAVs)
- The ROC Operations And Data System (ROADS), which concerns sub-systems relative to the instrument monitoring, commanding and data processing capabilities during the Solar Orbiter mission, namely: the Monitoring and Control Subsystem (MCS) and the Data Processing Subsystem (DPS).

The ROC GSE and ROADS are presented in the next sections. The software environments, i.e., development, testing, validation and execution, as well as the delivery schedule are given in the sections 5 and 6 respectively.

The specification requirements of the RSS can be read in the "ROC Software System Specification" document (RSSS) [RD36], and the RSS design in the "ROC Software System Design Document" (RSSDD) [RD37].

Figure 1. ROC Software System product tree.

2.1.2 ROC Operations And Data System (ROADS)

Figure 2 shows the ROADS software product tree in details.

The ROADS are six main software tools, regrouped into the MCS and DPS sub-systems:

- The MCS User Interface (MUSIC), a Web tool allowing ROC operators to view the mission planning, prepare and submit the operations requests, but also monitoring downlink/uplink TM/TC data flows and analysing incoming RPW data.
- The ROC Operations and Data Pipeline (RODP), the main data processing pipeline to retrieve and process RPW-related data, i.e., TM raw and ancillary data, and operation inputs.
- The RPW Calibration Software (RCS), which actually gathers the five programs in charge of producing RPW science calibrated data. In practice, the RCS are automatically run by the RODP using a specific interface.
- The RPW Low Latency Virtual Machine (LLVM), in charge of processing low latency data for RPW at the Solar Orbiter Science Operation Centre (SOC) site.
- The RPW Data Access Layer (DAL), the infrastructure to give an access to the ROC data.
- The RPW Data Archive (DArc), the infrastructure related to the RPW data archiving.

Besides, the ROADS software tools rely on several databases to work, as explained in the section 2.2.

The main instance of the ROADS, also named "primary" instance, will be hosted in the Laboratoire d'Etudes Spatiales et d'instrumentation en Astrophysique (LESIA) in Meudon, (France), which is the main ROC site. Secondary instances will have also to be deployed and run during the commissioning phase, but at the ESA Space Operations Centre (ESOC) in Darmstadt (Germany), which is the Mission Operation Centre (MOC) for the Solar Orbiter mission.

The next sections give an overview of the MCS and DPS components.

Figure 2. ROC Operations And Data System (ROADS) software products.

2.1.2.1 ROC Data Processing Subsystem (DPS) software units

2.1.2.1.1 The ROC Operations and Data Pipeline (RODP)

The "ROC Operations and Data Pipeline" (RODP) is the main RPW data processing pipeline. It performs all of the automated tasks related to the science/HK/ancillary/operations inputs data retrieval and processing.

The RODP is built with the "Plugin-Oriented Pipeline for Python" framework (POPPy) [RD31], which has a plugin-oriented architecture based on the Python package concept (see section 2.3.1 for more details). POPPy has been initially developed and applied to build the ROC-SGSE tool.

The table below gives the plugins of the RODP and their main functions. The plugins in italic belong to the POPPy core and are not represented in the figure above.

RODP plugin name	Function
DAta REquester (DARE)	Plugin in charge of requesting data delivered
	by the SOC/MOC interfaces, namely: TM
	packet/TC catalogue data from the MOC
	DDS interface, Solar Orbiter ancillary data
	and operations inputs from the SOC GFTS

	interface.
RPW Packet parsing Library (RPL)	Plugin in charge of parsing (i.e., de-
	commute/decompress) the RPW TM/TC
	packets
FILe Maker (FILM)	Plugin in charge of producing the LZ, L0, L1
	and HK data files from the retrieved RPW
	TM packets analysis
Data INGestOr (DINGO)	Plugin in charge of ingesting data into the
	MDB
RPW CAlibration WrApper (CAWA)	Plugin in charge of executing the RPW
	Calibration Software (RCS)
RPW LOw LAtency Pipeline (LOLA)	Plugin in charge to run the Low Latency Data
	Pipeline (LLDP) for RPW.
Data MONitoring and Analysis Unit	Plugin in charge of perform automated
(MONA)	analysis of the downlinked RPW data (i.e.,
	TC ack. analysis, TM assertion, HK/science
	data limits verification)
DAta DIssemination unit (DADI)	Plugin responsible of realizing the data
	dissemination and archiving tasks.
Pipeline UNit Keeper (PUNK)	Plugin in charge of monitoring the pipeline
	activities and notifying users.
PIpeliner mappER (PIPER)	Plugin in charge of initializing the pipeline
	and ensuring that static meta-data, required
	by the pipeline to run, are well defined
Pipeline Operations Planner (POP)	Plugin in charge of coordinating the
	operations (i.e., jobs) performed by the
	pipeline

Table 2. RODP plugins.

Furthermore, in order to retrieve RPW-related data, the RODP has dedicated interfaces with the MOC Data Dissemination System (DDS) and the SOC/MOC Generic File Transfer System (GFTS).

Internally, the RODP is directly connected to the ROC Mission Database (MDB) and has a dedicated interface to call the RPW Calibration Software (RCS).

The initial RODP design has inherited the ROC-SGSE architecture.

The list of RPW data produced by the RODP is given in [RD3].

2.1.2.1.2 RPW Calibration Software (RCS)

The RPW Calibration Software (RCS) are in charge of producing RPW science calibrated data files in the CDF format. In practice the RCS are external stand-alone software, which are run inside the ROC pipelines (RODP or ROC-SGSE), using a dedicated plugin named "CAlibration WrApper" (CAWA).

The RCS are developed and maintained by the teams in charge (see table below). It must be delivered to the ROC following specific procedures, described in the ROC Engineering

Guidelines for External Users (REGU) [RD17] and must include a standardized interface [RD21], in order to be called by $CAWA^{1}$.

RCS name	Function	Team in charge	Programming Languages
THR data	Produce TNR-HFR	TNR-HFR team	IDL
CALiBrAtion	L2/L2S calibrated	(LESIA, Meudon)	
SoftwaRe	science data files in		
(THR_CALBAR)	the CDF format		
TDS data	Produce TDS	TDS team (IAP,	IDL
CALiBrAtion	L1R/L2/L2S	Pragues)	
Software	calibrated science		
(TDS_CALBA)	data files in the CDF		
	format. L2/L2S only		
	concern the non-		
	waveform (WF) data		
	products.		
LFR data	Produce LFR	LFR team (LPP,	Python
CALibration UniT	L1R/L2/L2S	Palaiseau)	
(LFR_CALBUT)	calibrated science		
	data files in the CDF		
	format. L2/L2S only		
	concern the non-WF		
	data products.		
SCMCAL	Produce TDS/LFR	SCM team (LPC2E,	IDL
	L2/L2S magnetic WF	Orléans)	
	calibrated data files in		
	the CDF format		
Blas CAlibration	Produce TDS/LFR	Bias team (IRF,	Matlab
Software (BICAS)	L2/L2S electrical WF	Uppsala)	
	calibrated data files in		
	the CDF format. The		
	BICAS is a part of the		
	IRFU_MATLAB		
	package.		

Table 3. RPW Calibration Software (RCS).

2.1.2.1.3 RPW Low Latency Virtual Machine (LLVM)

The RPW Low Latency Virtual Machine (LLVM) is dedicated to process the Low Latency (LL) data for RPW. It contains a stateless version of the RODP, which is run via the dedicated LOLA plugin.

The primary instance of the RPW LLVM will have to run at the SOC site. Especially, the LLVM design, interfaces and delivery process must comply the specification defined by the SOC in the SOC Engineering Guidelines for external Users (SEGU) [RD10].

¹ Since each RCS can be written in different programming languages, the RODP calling interface must be as much as possible common between the software.

In addition, the ROC shall run its own instance of the LLVM at the LESIA. The development, test and execution environments will have to be as close as possible from the SOC one.

2.1.2.1.4 ROC Data Access Layer (DAL)

The RPW Data Access Layer (DAL) definition encompasses all of the interface layers to access RPW data at the ROC site.

2.1.2.1.5 The RPW Data Archive (DArc)

The ROC Data Archive (DArc), which regroups the ROC tools for RPW data archiving at both LESIA and external archive centres (i.e., ESA, CDPP).

2.1.2.2 Monitoring and Control Subsystem (MCS) software units

2.1.2.2.1 The MCS User Interfaces (MUSIC)

The MCS USer InterfaCes (MUSIC) is a Web interface, dedicated to the preparation of the instrument operations and to the instrument data monitoring.

The MUSIC frontend is composed of five tools:

- The RPW TM/TC Viewer (TV), used by ROC operators to promptly visualize the instrument status, TM/TC history and statistics, as well as the HK/science data.
- The RPW Flight Operation Procedure Editor (FIGARO), to create the RPW flight procedures (RFP) in the expected format [RD38].
- The RPW Flight Operation Request Editor (FAUST), to prepare and submit to the SOC/MOC the Instrument Operations Requests (IOR) in the expected format [RD8, RD44], and in accordance with the mission planning constraints.
- The RPW Operation Planning Interface (Opera), to visualize the mission and instrument planning and constraints (i.e., allocation resources) and prepare the operations timeline.
- The SBM Interactive Selection System Interface (SISSI), to manage and select the SBM1/SBM2 event data to downlink.

The MUSIC backend is composed of the following components:

- MUSIC common backend; the main backend of the MUSIC Web tool, which relies on the Django framework architecture [RD32].
- MUSIC_IDB; a module providing a database model to the other MUSIC backend components, in order to access the RPW instrument Database (IDB) in a standard way. The IDB used by the ROADS is stored in the ROC MDB. The database model is the same than for MUSIC (i.e., Django database model).
- Instrument TM RAte Calculator (TRAC); a module dedicated to the TM data rate computation for a given instrument state. Especially, this module serves to compare the instrument states against the Telemetry Corridors (TMC) provided by the SOC.
- Instrument POwer Consumption Analyser (POCA); a module to check the instrument power consumption.
- INstrument Commanding Automaton (INCA); a module in charge of managing the instrument state model (ISM) of MUSIC

The architecture of the MUSIC backend also has an interface with the MDB to retrieve/store related data and meta-data.

2.1.3 ROC Ground Support Equipment (GSE)

Figure 3 shows the product tree concerning the ROC Ground Support Equipment (GSE).

The ROC GSE application has initially concerned instrument tests performed on-ground prior to the launch, namely: the RPW EM2/PFM system calibrations and SBM1/SBM2 detection algorithm validation campaigns. Nevertheless, these GSE tools must be also used in order to pre-validate the RFP before submission, and during the in-flight operations in order to optimize the SBM1/SBM2 detection rates and to support investigations in case of anomalies.

Figure 3. ROC Ground Support Equipment related software products.

2.1.3.1 ROC Software GSE (ROC-SGSE)

The ROC Software Ground Support Equipment (ROC SGSE) was initially developed in support to the RPW AIT/AIV ground calibration activities. Its main function is to retrieve from a MEB GSE database [RD40], the RPW TM/TC packet data generated during a test log session. Then, from the analysis of these TM/TC data, to produce and view L1 science and HK CDF files.

The ROC SGSE is composed of:

- The ROC Ground Tests SGSE (GT-SGSE), a data pipeline to process the RPW data generated during a test and stored into a MEB GSE database. This pipeline is also able to process the stimuli data files generated by the RPW E-GSE system.
- The Test Viewer SGSE (TV-SGSE), an integrated Graphical User Interface (GUI) to load and visualize RPW data retrieved and processed by the GT-SGSE.
- The ROC-SGSE Test Database (TDB), which is used to store information and data related to the tests, as well as pipeline meta-data.
- The RPW User Libraries (RUL), IDL and Python software libraries for people who want to retrieve and analyse ROC SGSE data.

Instances of the ROC-SGSE have firstly been deployed and run during the RPW EM2/PFM system calibration campaigns performed at CNES (Toulouse) and LESIA (Meudon) sites respectively.

Two additional instance of the ROC-SGSE must be also available in support the GSE activities prior and during the mission:

- A first instance will be required to analyse data generated during RFP pre-validation, which will consist of executing RFP on a RPW "spare" model or S/C simulator with the MEB GSE tools. Especially, this task will require to install and connect the instance to a dedicated MEB GSE database.
- A second instance will have to be connected to the MEB GSE, which exchanges data with the RPW "spare" model installed at the LESIA site. This instance will serve to analyse RPW data, in the case where anomalies investigations are required on-ground.

The design of the ROC-SGSE is given in the "ROC-SGSE Software Design Document" [RD22].

2.1.3.2 RPW SBM1/SBM2 Algorithm Validation software (SAVs)

The SBM algorithm validation software (SAVs) for RPW is a set of two programs *"SimuSBM1"* and *"SimuSBM2"*, in charge of asserting and validating respectively the SBM1 and SBM2 detection algorithms of the DPU Application Software (DAS).

Both programs can currently perform the following tasks:

- Read synthetized input data and produce CDF format files that comply the specification defined in the REGU.
- Perform SBM event detection and report results into XML format files that comply the specification also defined in REGU.

The SAVs have been initially developed to support the RPW flight software team in the RPW DAS SBM1/SBM2 algorithms validation.

However, these two programs shall be able to read real RPW data generated on-board S/C, in order to analyse and optimize the SBM1/SBM2 event detection rates. In particular, the ROC shall be able to refine on-board algorithms detection parameters, using the results given by the SAVs.

The description of the "SimuSBM1" and "SimuSBM2" programs are given in the "SBM1 Detection Algorithm Simulator" and "SBM2 Detection Algorithm Simulator" documents respectively.

2.2 ROC databases

2.2.1 ROC Mission Database (MDB)

The ROC Mission Database (MDB) is the central base to run and manage the ROADS software. Especially, it permits to:

- Save information and metadata related to the data processing, event reports, instrument operation planning and requests
- Keep a track of the ROADS software units activity (i.e., logs of the jobs status and exceptions)

• Host versions of the RPW Instrument database (IDB), in both the LESIA PALISADE and MOC Mission information base (MiB) formats.

The MDB will be hosted on a dedicated Relational Database Management System (RDBMS) server, maintained by the LESIA computer service (GIGL). It inherits the developments made on the ROC-SGSE Test Database (TDB).

The MDB is described in the "ROC Mission Database Description Document" (MDBDD) [RD39].

2.2.2 RPW Instrument Database (IDB)

The RPW Instrument Database (IDB) contains all of the information to analyse TM/TC packets for RPW, as formatted in the Solar Orbiter Mission Information Database (MiB).

The IDB is developed and maintained by the RPW flight software team.

The ROC Instrument Database is a copy of the IDB hosted in a specific "idb" schema of the MDB.

The ROC IDB can load both the PALISADE XML format version of the IDB, as internally used by the RPW flight software and MEB GSE teams, and the MOC MiB ASCII format version. This duplicity allows the ROC to be able to analyse, at first a step, the TM/TC packets generated from different versions of the IDB, and loaded on both RPW ground as flight models.

2.2.3 Solar Orbiter Mission Information base (MiB)

The MOC will distribute a "reference" Mission Information base (MiB) to the IT. This MiB is made up of the latest Spacecraft Reference Database (SRDB), including payload IDBs, used by the Flight Control Team (FCT) for mission operations.

The ROC shall plan to host a copy of this database, and ensure to use during the mission an IDB from the MOC MiB operational version.

2.2.4 ROC-SGSE Test database (TDB)

The Test database (TDB) is used by the ROC-SGSE to store its configuration meta-data, control its activities and manage the processing of RPW data, retrieved from the MEB GSE database.

2.2.5 ROC MEB GSE database

The ROC MEB GSE database is the MEB GSE database used by the ROC, in order to store its data generated during tests performed on the RPW "spare" model on-ground. This database can be reached:

- By the ROC-SGSE, to generate L1/HK CDF data files
- Via the MEB GSE tools, mainly in order to edit and run C-SGSE scripts or visualize data with the MA-SGSE (see [RD40] for more details about the MEB GSE tools).

2.3 ROC third-party software products

The third-party software products concern all of the software and interfaces developed by the ROC team in parallel to or outside the scope of the RSS.

2.3.1 The Plugin-Oriented Pipeline for Python (POPPy)

The architecture of all of the ROC data processing pipelines (i.e., ROC-SGSE, RODP, RLLP) is based on the "Plugin-Oriented Pipeline for Python" framework (POPPy).

This framework was initially written during the ROC-SGSE development, in order to offer a standard and easy way to build a data processing pipeline with the Python 3 programming language. The initial framework was then used and extended in order to develop the RODP.

A pipeline built with POPPy is composed of a network of inter-connected modules, also called "plugins", to work. Each plugin is typically assigned to one or more well-defined functions (e.g., retrieving data from MOC, producing RPW L1 data files, etc.). To execute a given function, the plugin relies on one or more "tasks", which can be called invidually or as a workflow.

The POPPy architecture design relies on the Python 3 package mechanism, which is very powerful in terms of software installation, configuration and execution.

A full description of this framework can be found in the document [RD35].

2.3.2 RPW user software tools and services

The ROC team should make available helpful routines that can be used by the RPW consortium and other instrument teams, in order to retrieve and handle the data produced by the ROC-SGSE and RODP.

These routines will then constitute the baseline of software libraries for the RPW data user community.

Two libraries are currently developed jointly with the MASER project team [RD41]:

- The "maser4py" Python module (<u>https://github.com/maserlib/maser4py</u>)
- The "maser4idl" IDL package (https://github.com/maserlib/maser4idl)

Both libraries should be freely accessible through the RPW Web portal during the whole mission.

2.3.3 Software in support to the operation and data processing activities

In addition to the ROADS and ROC GSE software products, the ROC shall ensure that tools are developed and run in order to perform the following specific tasks:

- On-board RPW TM and power budget analysis and optimization. This software will be developed by the ROC.
- On-board BIAS current setting from sweeping data. This software should be under the responsibility of the Bias team.
- Effective electrical antenna length and direction determination in-flight. The TNR-HFR team.

A first version of these tools shall be up-and-running at the beginning of the Cruise Phase (CP).

2.3.4 Project management software products

The ROC does not plan to develop any specific software relative to the project management. The centre will only rely on existing commercial software to supervise its activities (see PMP for details).

2.3.5 Solar Orbiter Inter-instrument software products

At this stage of the project, the ROC team does not plan to develop specific software related to inter-instrument collaborations inside Solar Orbiter project.

2.3.6 External collaboration software products

At this stage of the project, the ROC team does not plan to develop specific software related to inter-mission science collaborations (e.g., with FIELDS instrument on Parker Solar Probe).

3 ROC DATA PRODUCTS OVERVIEW

The ROC is in charge of the data processing, dissemination and archiving tasks for RPW. The exhaustive list of instrument data to be produced during the Solar Orbiter mission is reported in the "RPW Data Products" (RDP) document [RD3].

This document must at least supply a short description of each data product, including the format and the context of creation.

3.1 File naming convention, data format and metadata definition

The file naming data format, metadata and processing level definition for the RPW science data must comply the conventions defined at Solar Orbiter level [RD12].

Conventions for the data produced during on-ground calibration tests must be defined separately in [RD4].

Other rules and procedures concerning the data production at the ROC must be listed into the REG document [RD16].

3.2 Data product suppliers and customers

The ROC will have to retrieve, process, generate, validate and deliver several categories of data products during the project. The following table gives a summary of these data, with the format, the suppliers and the main customers.

Data product category	Data format	Data supplier	Data customer(s)
MEB SGSE test log	MEB SGSE test log	RPW MEB GSE	ROC
	XML format	team, via the ROC-	
		SGSE MEB GSE	
		database interface	
ROC-SGSE data (HK	CDF	ROC (generated by	RPW Consortium,
and uncalibrated science		the ROC-SGSE	AIT-AIV
L1 data)		from the MEB	CNES/LESIA teams
		SGSE test log files)	
RPW TM packet data	EDDS XML format	MOC (via the	ROC
		EDDS)	
RPW TC catalogue data	EDDS XML format	MOC (via the	ROC
		EDDS)	
RPW TC packet	IOR XML format	ROC (via the SOC	SOC
sequences for instrument		GFTS)	
nominal operation			
requests			

Plan

- 24 / 56 -

RPW TC packet	PDOR/MDOR XML	ROC (via the MOC	МОС
sequences for instrument	format	GFTS)	
non-routine operation		,	
requests (e.g.,			
contingency, patches)			
RPW Flight Operation	MOIS importer	ROC (directly by	MOC
Procedures	format (Microsoft	email to the point of	
	$Excel(\widehat{C})$	contact at the MOC)	
MER SGSE GEDEON	MEB SGSE	ROC (exported by	ROC
import script	GEDEON XML	the FAUST tool)	Roe
	format		
RPW LZ data	XML	ROC (generated by	ROC
		the RODP from the	Roe
		RPW TM packet	
		data)	
RPW L0 data	HDF5	ROC (generated by	ROC RPW
	11010	the RODP from the	Consortium
		LZ data)	Consolution
RPW L1/L1R/L2 science	CDF	ROC (generated by	RPW Consortium
data	CDI	the RODP from the	ESA/CDPP data
		L0 data)	archives Science
		20)	Community
RPW HK-digest	CDF	ROC (generated by	RPW Consortium
parameters		the RODP from the	
		L0 data)	
RPW L3 science data	CDF (TBC)	RPW Lead CoI	RPW Consortium,
		teams (TBC)	ESA/CDPP data
			archives, Science
			Community
Solar Orbiter MOC	SPICE kernels	SOC (via GFTS)	ROC
Orbit/attitude/time/frame			
data			
Pre-Processed	CDF	SOC	RPW Consortium,
Orbit/attitude/time/frame-			ESA/CDPP data
digest data for RPW			archives, Science
			Community
Quick-looks	PNG	ROC (generated by	RPW Consortium,
		the RODP)	ESA/CDPP data
			archives, Science
			Community
E-FECS file	XML	SOC (via the GFTS)	ROC
TMC file	XML	SOC (via the GFTS)	ROC

Table 4. Categories of ROC data products.

4 ROC SOFTWARE MANAGEMENT APPROACH

4.1 Master schedule

The general project master schedule and main milestones are presented in the PMP [AD3].

4.2 Assumptions, dependencies and constraints

4.2.1 Assumptions

At the stage of the project, the ROC assumes that:

- No formal review of the instrument ground segments design will be organised by ESA. Only RFP and interfaces with the MOC and SOC will be validated during the dedicated test campaigns.
- Only the RPW LLVM will have to be delivered to the MOC/SOC.
- With the exception of the LLVM and as long as the expected MOC/SOC interfaces are compliant, the instrument ground segments are free to design its software².

4.2.2 Dependencies

The RSS development and execution are dependent of:

- The RPW IDB availability, which is under the responsibility of the RPW flight software manager at the LESIA
- The RCS, which are maintained by the RPW analyser/sensor teams
- The MOC and SOC interfaces availability, hosted and maintained by the ESOC and ESAC respectively.
- The MEB GSE availability, under the responsibility of the RPW MEB GSE manager at LESIA
- The possibility of using RPW engineering model (or S/C simulator) to validate the flight procedures.
- Since most part of the RSS is run on LESIA servers, the availability of these servers and the Internet/Intranet networks.

4.2.3 Constraints

As software supplier the ROC developer team is limited by the following schedule constraints:

- The Solar Orbiter mission schedule and constraints (see PMP)
- The instrument ground segment key points and reviews (see PMP)
- The SOC/MOC interface test schedule [RD20]
- The SOV/SVT campaign planning [RD29]
- The SOC Low Latency (LL) virtual appliance testing and delivery schedule [RD30]
- The RPW instrument calibration plan [RD28]

² Nevertheless, the software design still has to comply the high-level and related-specification requirements.

Additionally, the ROC shall take account of the technical constraints:

- The RSS will be hosted at the LESIA site, using the hardware and software resources of the laboratory. Especially, the ROC systems shall comply the LESIA policy in terms of software security and applicability.
- Instances of the ROADS will have to be deployed and run at the MOC site during the commissioning phage. Although the instrument teams might have the possibility to bring their own computer equipment, they will have to ensure that their systems are compliant with the MOC software policies and can be run correctly.

4.3 Software development related risks

The following table attempts to identify the categories of risk that could potentially become points of potential failures for the ROC software development activities. The main consequence is often a delay in the software delivery.

Category of risk	Cause(s)	Consequence(s)	Severit y	Probability	Solution(s) to mitigate the risk
Hardware/Operatin g System (OS) failure at LESIA	Obsolescence , overvoltage	Delay in development, which can cause a delay in the delivery	High	Medium	Plan backup systems to be rapidly deployed at LESIA site (but also during NECP operations at MOC). To mitigate the risk at OS level, the ROC uses virtual machines as primary servers for the RSS. (Hardware/O S recovery is the responsibility
Obsolete software/hardware	Software updates are not retro- compatible, unavailable hardware devices	Delay in development, which can cause a delay in the delivery	Low	Low	of the GIGL) Use as much as possible stable, portable and time- honoured software

					technology
Unexpected	Transfer,	Under-sized	High	Medium	Prompt Non
personnel reduction	voluntary	team, loss of			permanent
in the developer	redundancy,	expertise, delay			post hiring or
team	contract end,	in development			internal
	disease,				replacement
	pregnancy,				by the LESIA
Lack of experience	Developer	Software	Mediu	Medium	The ROC
	not familiar	quality loss,	m		shall offer the
	with a	required			possibility to
	software	specification			its developer
	technology or	not reached,			team to get
	with quality	software			professional
	requirements	delivery delay			training and
					to be
					followed by a
					software
					quality
					assurance
					manager

Table 5. Categories of risk related to software development.

4.4 Monitoring and controlling mechanisms

4.4.1 ROC software development "sprint" mechanism

The concept and implementation of the ROC software development "sprints", based on the Agile Scrum method, are described in the PMP.

4.4.2 Software development tools

In addition to the team collaboration tools listed in the PMP, the ROC will rely on the following tools to ensure the software development:

- Jenkins continuous integration tool, to control the S/W design and functionalities over the development.
- **Gitlab server**, to store the source codes of the RSS tools (i.e., ROC-SGSE, RODP, MUSIC, LLVM, etc.) and to report related issues, especially the following repositories shall be at least found:
 - AdminTools, to store programs and data to administrate the RSS
 - **DataPool**, to store data templates (i.e., CDF skeletons, XSD, etc.)
 - **OpsLib**, to archive operation files (i.e., IOR/MDOR/PDOR, flight procedures and ROC C-SGSE XML scripts)
 - **OpsLib-test**, same than OpsLib but for testing.
 - \circ **RocDocs**, to store ROC documentation source files and templates (.docx, latex)
 - SupportTools, used to store additional programs in support to ROC activities
 - **TestTools**, to store software tools in support to the RSS test and validation.

In addition, the Gitlab server will be also used to deliver to the ROC and archive at LESIA the RCS files.

4.4.3 ROC facilities access management file

Information about the user access privileges to the ROC facilities, servers, services and disks shall be reported into a dedicated Excel file.

This document shall be under the responsibility of the RPW GSPM Manager and must be always up-to-date.

4.4.1 ROC data product management approach

4.4.1.1 ROC data set listing files

The ROC team shall write and maintain an up-to-date list of data to be produced by the RODP at the LESIA during the whole mission. Each line of this list shall correspond to an uniquely identified data set. The list of fields to be provided for each data set is given in the section 4.4.1.2. Besides, each data set shall be associated with a given template, e.g., skeleton tables for the CDF files, XSD for the XML files.

Both the ROC-SGSE and RODP will have its own data sets. The related convention for the RODP and ROC-SGSE must be respectively defined in [RD3] and [RD4].

4.4.1.2 ROC data set listing file description

The following table gives the list of columns to be found in the ROC data set files.

Column name	Description	Priority
Dataset ID	Identifier of the dataset in the ROC system. It	Mandatory
	shall be unique.	
Dataset name	Full name of the dataset	Mandatory
Dataset description	Description of the dataset	Mandatory
Data processing level	Processing level of the dataset	Mandatory
Data file format	File format of the dataset	Mandatory
Data file periodicity	Periodicity of production of the data file for the	Mandatory
	current dataset (e.g., daily, monthly, per event,	
	etc.)	
Data validation leader	Entity (person, institute or team) in charge of	Mandatory
	the dataset validation	
Data validation	Entities (person, institute or team) that	Optional
contributor(s)	contribute to the data validation.	
Data definition schema	Name of file containing the dataset definition	Optional
file	schema (e.g., CDF skeleton, XSD, etc.)	
Parent dataset IDs	ID(s) of the parent dataset(s) required to	Optional
	produce the current dataset.	
Calibration table file(s)	<i>ibration table file(s)</i> Name of the file(s) containing the table to	
	calibrate the data of the current dataset.	
Software name	Name of the software used to produce the	Mandatory
	current dataset	
Software	Entity (person, institute or team) in charge of	Mandatory
development/maintenance	developing and maintaining the software.	
leader		

Software development/maintenance	Entities (person, institute or team) that contribute to the software development and	Optional
contributor(s)	maintenance.	
Software application	Entity (person, institute or team) which is	Mandatory
leader	effectively run the software.	

Table 6. ROC dataset listing file columns.

4.5 Staffing plan

The ROC staff is presented in the PMP.

4.6 Software procurement process

ROC software development, test and application environments shall essentially rely on free software projects (e.g., Python, Linux, etc.) to work.

For commercial software such as IDL \bigcirc and Matlab \bigcirc programming languages, it has been decided with the GIGL agreement that the ROC developer teams can use the licences supplied by the LESIA.

Software licences shall be reported into the ROC Software Reuse File (SRF).

Additionally, Personal Computers (PC) - or equivalent Virtual Machine (VM) - operating with Windows 7[©] is needed in order to run the MEB GSE tools.

4.7 Supplier management

4.7.1 RCS specific development plan

4.7.1.1 Convention and procedures

In the case of the RCS, the teams shall follow the specific convention and procedures defined in the REGU.

4.7.1.2 Monitoring and controlling mechanisms

Additionally to the validation tests, regular engineering teleconferences shall be organized by the GSPM to follow the RCS development, validation and delivery, including the software data products (i.e., CDF skeletons) and the interface with the RODP.

During these teleconferences, it shall be discussed:

- The progress of the RCS development, including the L1R/L2 data production and the compliance with the ROC interface. The calibrations must be discussed in other dedicated teleconference cycle.
- The list of ended/to be done tasks prior to the next teleconference
- The delivery planning (S/W source codes, related-files and documentation)

The GSPM shall write and send to the people involved the minutes of meeting of the teleconference, and take up-to-date the list of action-items related to the RCS development activities.

4.7.1.3 RCS implementation philosophy

Since the RCS are developed with different programming languages, the ROC must plan to develop a specific interface to call the RCS from the RODP. This interface must be specified

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

in a dedicated "RPW Calibration Software Interface Control Document" (RCS ICD) [RD21]. The way the RCS must be delivered must be described in the REGU.

4.7.1.4 RCS validation tests schedule

The table below gives an overview of the schedule of the RCS implementation tests. The test specification, expected results and schedule shall be detailed in the ROC Software System Validation Plan (SVP). The procedures related to the RCS tests shall be given in the REGU.

Test name	Description and main objectives	Schedule constraints
RCS	Test the RCS interface is compliant	To be completed prior to the ROC
"interface	with the RCS ICD. This test is	software validation campaign.
compliance"	performed using the dedicated RCS	
test	interface validation tool.	
RCS "E2E"	End-to-end (E2E) test to validate the	To be performed during the ROC
integration	RCS execution by the RODP. It	software validation campaign.
test	mainly consists of comparing L1R/L2	
	data, generated by the RODP during	
	the test, with expected outputs	
	provided by the teams in charge.	

Table 7. RCS validation tests schedule.

4.7.1.5 RCS software delivery schedule

The main delivery schedule about the RCS is listed in the section 6.2.

4.7.1.6 RCS documentation delivery schedule

Concerning the RCS documentation, the RCS teams shall produce:

- A Software Requirement Specification (SRS) document
- A Software User Manuel (SUM).

First versions of these documents shall be delivered to the ROC according to the following schedule. After, up-to-date versions of the documents will have to be supplied to the ROC when required. Especially, any new software release shall yield to a new SUM.

Document(s)	Version	Schedule constraints
SRS	Draft version	To be delivered with the RCS
		"preliminary" datapackage
SRS / SUM	First issue / Draft version	To be delivered with the RCS "ready-
		for-flight" datapackage
SUM	First issue	To be delivered with the RCS "fully
		operational" datapackage

Table 8. RCS documentation delivery schedule.

Templates of SRS and SUM, indicating the expected content, will have to be provided by the ROC.

5 ROC SOFTWARE DEVELOPMENT APPROACH

5.1 Strategy to the software development

5.1.1 General convention and philosophy

5.1.1.1 ROC software development, test and validation philosophy

5.1.1.1.1 RSS development at LESIA

Except the RCS, all of the software relative the RSS will be developed by the ROC on a dedicated *development* environment, including: a development server, specific software environment (e.g., dedicated virtual environments for the software running under Python, specific branches of the Git repository), specific databases and file systems to store input/output files for development purpose only. The *developmennt* environment shall be as much as possible similar, but not necessary the same, than the *production* environment used in operations.

The rules and procedures to be applied when developing ROC software must be detailed in the REG.

In addition, the ROC developer team will rely on a continuous integration tool (see section 4.4.2) in order to avoid regressions in the codes during the development. This tool will verify - after every modification by developers - that the software works correctly, by launching all of the unit tests found inside the code (see the SVP for more details).

5.1.1.1.2 RSS test and validation at LESIA

The RSS software will be tested and validated by the ROC on a dedicated *preproduction* environment, including: a preproduction server (in practice the preprod. server will be the same than the prod. server), specific software environment (e.g., dedicated virtual environments for the software running under Python, specific branches of the Git repository), specific databases and file systems to store input/output files for testing purpose only. The *preproduction* environment shall be as much as possible similar to the *production* environment used in operations.

The rules and procedures to be applied when testing and validating ROC software must be detailed in the REG.

In particular, the *preproduction* environment will be that a software validation campaign will be also planned, prior to the ROADS "ready-for-flight" version delivery. It will allow the ROC to check that the required functionalities and performances of the RSS are reached before the launch. The specification, organization and the expected results of this campaign must be reported into the SVP.

5.1.1.1.3 RCS development, test and validation

Concerning the RCS, the teams in charge must develop and test the S/W for their own subsystems. Prior to the delivery, the teams must ensure that the software stand-alone execution works correctly on the ROC software environment, and that the interface is compliant with the RCS ICD. Especially, the ROC team will not perform the S/W compilation and configuration on both its development and production servers.

5.1.1.1.4 RPW LLVM development, test and validation

As described in the section 2.1.2.1.3, the RPW LLVM is a VM where a stateless version of the RODP is installed.

The LLVM validation is hence performed in two steps:

- The verification of the execution of the RODP, via the LOLA plugin, is done in the framework of the RODP validation test
- The VM it-self includes specific validation processes, which have to be compliant with the SOC expectations [RD10].

Note that concerning the RPW LLVM, the final validation is always performed by the SOC.

5.1.1.1.5 RSS development, test and validation at MOC site

Instances of the RSS will have to be deployed and run at the MOC site, to analyses RPW data during NECP.

Details about how these instances will be tested and validated are not known at this stage of the project.

5.1.1.2 ROC software execution and maintenance philosophy

All of the software relative to the RSS, including the RCS, shall be hosted and run at the LESIA only. It required the RCS to be delivered to the ROC by teams in charge, following the procedures defined in the REGU. Nevertheless, the primary instance of the LLVM for RPW will be run at the SOC. And the ROC team shall plan to deploy secondary instance(s) of the ROADS at the MOC site during the RPW related NECP operations.

The RSS deployed at LESIA will have to run on dedicated production servers: one for the backend (i.e., ROC pipelines, RODP and ROC-SGSE) and one for the user interfaces (i.e., MUSIC Web tool). There must be one environment per instance (e.g., one virtual environment, one database instance, etc.).

The monitoring of the RSS execution must be done using dedicated tools. In addition, software, including the RCS, will have to generate log files, giving the history of the processes.

Any upgrade of software will have to be done via the ROC software version control system (VCS), as explained in the REG.

Note that the RCS teams can produce data from their local software instance, to support calibration validation and software upgrading for instance, but these data shall be not released publicly without the permission of the RPW PI.

5.1.1.3 ROC software development conventions, procedures and rules

The RPW GSPM shall define general conventions, procedures and rules concerning the ROC software development at LESIA. These conventions shall be listed into the REG.

The REGU document shall address to the sub-system teams the additional rules specific to the RCS development.

In all cases, the RPW GSPM shall ensure the homogeneity and the re-usability of the software development and application environment. Moreover it shall ensure the technologies used are as much as possible sustainable over all of the phases of the project.

5.1.2 Software versioning convention

The software versioning convention for RSS must be defined in the REGU, the convention proper to the LLVM is defined in [RD10]; otherwise the convention to apply for RSS software must be defined in the REG.

5.1.3 Software development configuration

The ROC software developers shall rely on:

- The ROC Gitlab server to regularly save (i.e., commit and push) a copy of their works on the dedicated remote repositories
- The ROC Gitlab server to regularly check progress made by the other developers on a given remote repository
- The ROC Gitlab servers to follow development activities and tasks priorities via the dedicated issues "sprint" dashboards
- The ROC Confluence Wiki page to follow the ROC "sprint" meetings activities and reports.
- The ROC Jenkins interface to check the continuous integration activities, and more particularly the unit tests results.
- The ROC mailing lists to follow the discussions related to the ROC project.

According to this, the ROC GSPM will have to control that the rules and procedures defined in the REG, are well respected by the developer team.

5.1.4 ROC engineering validation plan

The way the whole ROC engineering infrastructure will be validated must be described in the SVP document. It must include the list of tests to be achieved, their purpose, the procedure to follow to perform and validate them, the person in charge and the logistic required for the tests.

A timeline presenting the deadlines of the validation test campaigns, in agreement with the ESA schedule [RD20], must also be provided.

5.1.5 ROC software product assurance plan

The software product assurance plan of the ROC is described in the SPAP.

5.2 ROC software development life cycle

5.2.1 ROC software development life cycle

The RSS software development life cycle is illustrated on the figure below.

Figure 4. ROC software development life cycle.

The *requirements* and *specification* steps mainly consist of writing the CIRD and the RSSS, according to the requirements and specification at higher level.

The *design* step is dedicated to define the RSS design and to list the associated unit tests to be implemented.

The *development* step will have to be driven with two weeks-spaced "sprint" meetings (see section 4.4.1).

There is no specific testing phase, since the code source is written and continuously integrated - with non-regression verification capabilities offered by the Jenkins tool - during the *development* step.

The *validation* and *commissioning* steps are dedicated to validate the RSS expected functionalities, respectively prior to the launch and after the in-flight instrument-commissioning phase.

The table below gives the list of expected events – reviews, key points, and validation campaigns - for each step of the software development cycle. The list of documents to be delivered before/after each review/key point is given in the SPAP.

Software development step	Expected review/key points/events	
Requirements	N/A	
Specification	N/A	
Design	Preliminary design key point	
Development	End of design key point (to take account of changes in the	
	specification and planning)	
Validation	ROC software validation campaign kick-off meeting at the	
	beginning of the step / ROC software validation campaign	
	review board at the end.	
Commissioning	ROC commissioning review board	

Table 9. Expected technical documents during ROC software development life-cycle.

The RSS life-cycle schema is closed to a typical waterfall life cycle. However, since higherlevel specification is susceptible to change during the development (mainly due to the SOC/MOC interfaces design and data exchange formats), it shall be flexible enough to introduce possible iterations between *specification*, *design* and *development* steps (white curved arrows on the figure).

The possible software modifications to be introduced in software shall be discussed in the "sprint" meetings every two weeks.

Ref: ROC-GEN-SYS-PLN-00015-LES

5.3 Software engineering standards and techniques

ROC software is mainly written using Python programming language, for the backend parts, and JavaScript, for the Web frontend parts.

5.3.1 ROC Python-based software engineering standards and techniques

The ROC software written using the Python programming language shall:

- Use Python 3.4 version or higher
- Be developed, tested and run using virtual environments [RD33]. There must be one virtual environment per instance
- Use as much as possible the Python package mechanisms [RD34]
- Follow the PEP8 syntax standard [RD45]

It shall concern at least the following software:

- ROC-SGSE
- RODP
- MUSIC backend, built with Django framework [RD32]

5.3.2 ROC JavaScript-based software engineering standards and techniques

The ROC software written using the JavaScript (JS) programming language shall:

- Use JS ES6 version or higher
- Since there is no well-accepted JS coding standard, follow the syntax convention defined in the REG.

It shall concern at least the following software:

• MUSIC frontend

5.3.3 LLVM specific engineering standards and techniques

The engineering standards and techniques specific to the LLVM can be found in [RD10].

5.3.4 RCS specific engineering standards and techniques

For RCS teams using Python, it is strongly recommended that the same standards and techniques than the ROC are applied to develop their software.

5.4 Software development, testing, validating and execution environments at LESIA

The software environments related to the RSS, which shall be deployed and run at the LESIA site during the mission, are presented in the next sections.

5.4.1 RSS operational infrastructure overview

Figure 5 shows the infrastructure – servers, client and data exchange protocols - to be implemented at the LESIA site, in order to execute the RSS in operation. The infrastructure related to the MEB GSE tools is not presented on the figure.

There are five main components:

- The ROC "production" server, used to deploy and run the ROC pipelines (RODP, ROC-SGSE and RCS). Besides, the pipelines installed on the production server will have to be able to communicate with the DDS server on the MOC site.
- The ROC "Web" server, which stores the backend programs of the MUSIC Web tool
- The ROC "database" server, where all of the instances of the ROC databases are deployed in production
- The ROC "file system" server, where all of the data produced internally by the RSS, or retrieved from outside, are saved. Especially, SFTP and HTTPS servers are also mounted on a dedicated area of this server, in order to exchange data with external collaborators sites (e.g., SOC/MOC GFTS and DDS, RPW consortium).
- MUSIC clients, who are not strictly speaking a server, but gathers all of the MUSIC users computers connecting to the MUSIC Web tools (e.g., through Web browsers).

All of these components will be only accessible from the LESIA intranet network. Additionally, the MOC DDS and MOC/SOC GFTS external interfaces will have to be available too.

Figure 5. RSS infrastructure overview at LESIA.

The detailed list of each component is given in the sections below.

5.4.1 RSS development, testing and validating infrastructure overview

The ROC developers are free to use their own PCs or the roc development server for writing source codes.

However, since the development and testing environments are highly coupled, it is strongly recommended to use an infrastructure as close as possible from the operational one, and to be able to regularly - at least once a day - pull the newest work in the dedicated remote

repository on the ROC Gitlab server. Besides, it will allow Jenkins to run verification tests after a request mergings.

The ROC shall use the operational infrastructure, but with dedicated *testing* and *validating* environments respectively, to test and validate the RSS. In another word, it requires to plan dedicated instances of databases, virtual environments, software input/output data files and corresponding folders, ... The description of the validation facilities must be given in the ROC SVP.

It must be highlighted that the MOC DDS and MOC/SOC GFTS interfaces might be tested and validated independently, and may hence be not components of the testing and validating infrastructure. Nevertheless, the ROC shall plan to simulate data exchange via these interfaces, for specific software tests and during the ROC software validation campaign.

5.4.2 ROC hardware equipment

According to the responsibilities defined in the CIRD, all of the ROC hardware: servers, data disks and interfaces, are maintained and administrated by the GIGL.

5.4.2.1 ROC data storage volume capability

The nominal RPW TM raw data rate on-board is 5.5 kbps, which corresponds to a volume of 59.4 MB per day. Nevertheless, the actual rate might be increased up to three times this value during best data downlink windows.

According to this, an estimation of the full RPW data volume after processing (i.e., HK, L1 and L2 data files production) for a day can be \sim 2 GB. Additionally, the ROC will have to store L3 and ancillary data (i.e., SPICE kernels), summary plots and operations-related files (i.e., E-FECS, TMC, IOR, procedures etc.), which should occupy around 1 GB per day.

In consequence, the total amount of data is expected to be ~ 1 TB per year during the mission, so 10 TB over 10 years including the extended phase.

Moreover, the data processing and dissemination steps might require redundancy of data files (e.g., predictive/definitive or private/public data), hence 20 TB over 10 years shall be planned to be confortable enough. Finally, the data from ground tests, i.e., mainly GSE data, as well as personal data stored by the ROC users should require \sim 10 TB.

The ROC data product files, mainly generated from the ground calibration campaigns with GSE, are currently stored using two 8 TB data disks. However, the total data volume capacity will be extended to 32 TB before the launch.

Additionally, the ROC plans to rely on the DIO data storage facilities at the Paris Observatory, in order to save its long-term data archive. Especially, data archive will have to be regularly - at least every week – saved on magnetic tapes. This facility will have to be up-and-running at the beginning of the cruise phase.

5.4.2.2 ROC database storage volume capability

The ROC databases - MDB, TDB and ROC instances of the MEB GSE database - will be hosted on the LESIA database server. The total ROC databases size estimation is 3 TB over 10 years.

5.4.2.3 ROC servers

Table below provides the name and function of the ROC servers hosted at LESIA.

Server name	Function	Configuration	Access privileges
roc.obspm.fr	The "production server" is used to run the primary instance of the RODP in prod.	 A x86 Intel architecture VM Inter(R) Xeon(R) 2.4 GHz Linux Debian Jessie OS. 871 GBytes (shared memory) 	The administration of this server is done by the GIGL. Only accessible to the authorized ROC developers through SSH.
roc-dev.obspm.fr	The "development server" is dedicated to develop, test and validate the RODP, before implementation on the "production" server. Teams to test and validate their RCS, before delivery to the ROC, can also use it. The dev. server also hosted a test instance of MUSIC	 A x86 Intel architecture VM Inter(R) Xeon(R) 2.4 GHz Linux Debian Jessie OS. 871 GBytes (shared memory) 	The administration of this server is done by the GIGL. Accessible to the ROC team and RPW consortium people involved in the ground segment activities.
roc-web.obspm.fr	The "web server" is used to host the MUSIC tool	 A x86 Intel architecture VM Inter(R) Xeon(R) 2.4 GHz Linux Debian Jessie OS. 871 GBytes (shared memory) 	The administration of this server is done by the GIGL. Only accessible to the ROC developer team through SSH.
dam- nancay.obspm.fr	The dam-nancay server is used to host, test and run the RPW LLVM instance at LESIA.	• Same than the EUI LLVM	The administration of this server is done by the GIGL. Only accessible to the ROC LLVM developers through SSH.
roc-nfsvm	VM used by the LLVM to test the NFS mounting. This VM is hosted on damnancay.	• Same than the EUI NFS testing VM	
rocpc1.obspm.fr	This is the server used by the ROC to host and run the MEB GSE tools	• Windows 7	The administration of this server is done by the ROC developer team.
arietis.obspm.fr	The <i>arietis.obspm.fr</i> server hosts the RPW		The administration of this server is done

	Web page at the		by the GIGI with
	LESIA.		specific accesses for the ROC team in order to edit the RPW Web page through the SPIP ³ framework.
lesia11.obspm.fr	The "data storage" server is used to reach the LESIA data disks, which store the ROC data files. It currently provides 16 Terabytes of space. This server is only accessible in read/write privilege from the roc- dev.obspm.fr and roc.obspm.fr via a ZFS mounting system. HTTPS and SFTP servers also runs, giving access of private/public directories.	16 Terabytes (to be extended to 32 before the launch)	The administration of this server is done by the GIGL, with specific accesses for the ROC and sub- system teams.
TBD	The ROC plans to have a dedicated server for its long-term data archive. This server will have to be reachable from the roc.obspm.fr server using NFS mechanism. It is expected that regular backup of data is performed. This server will have to be ready before the launch.	TBD (at least 32 TB over 10 years)	The administration of this server is done by the DIO.
bdd-	The "LESIA database		The administration
lesia.obspm.fr	server" will be used to host the ROC databases.		of this server is done by the GIGL, with specific accesses for the ROC team to its databases.
TBD	One PC connected to at least 2 22" size screen	• Minimal configuration	The maintenance and administration
		to display the MUSIC	and auministration

³ http://www.spip.net/

- 40 / 56 -

	monitors, in order to	frontend from a client	of this equipment
	view the RPW activity	(i.e., Web browser)	will be under the
	during the mission.		GIGL responsibility.
	This equipment shall be		The ROC system
	available 24h, in the		administrators shall
	RPW operations room		ensure the MUSIC
	at LESIA.		client is still up-and-
			running
gitlab.obspm.fr	Used to host the ROC		The administration
	gitlab server		of this server is done
			by the DIO, with
			specific accesses for
			the ROC team to
			manage its Git
			repositories. Some
			repo. must also be
			accessible to the
			RPW teams.
confluence-	Hosts the ROC		The administration
lesia.obspm.fr	confluence site.		of the server is done
			by the GIGL.
jira-	Hosts the ROC JIRA		The administration
lesia.obspm.fr	site.		of the server is done
			by the GIGL.

 Table 10. ROC operating servers.

Note that the development and production servers are not sized to store a large amount of data volume, and shall be used for program testing and execution only.

5.4.3 ROC hardware communication interfaces at the LESIA site

At the LESIA site, it shall include:

- Internal communication interfaces between the ROC servers
- Internal communication interfaces between the ROC servers and data disks
- Internal communication interfaces between the ROC servers and ROC team computers.
- Communication with the Internet network through the dedicated interfaces.

The availability of these facilities is under the GIGL and DIO responsibilities.

5.4.4 Software environment

5.4.4.1 ROC server Operating Systems (OS)

The ROADS servers will run on the same SMP Debian Jessie x86_64 Operating System (OS).

The default command processor of the system will be the **Bourne-Again SHell** (BASH) V4. In consequence, any S/W executed on the ROC servers shall work within this OS environment.

An additional Windows 7 server is also available to use the MEB GSE tools and database instances of the ROC.

5.4.4.2 ROC LLVM OS

The RPW LLVM is a tailored copy of the LLVM developed by the Solar Orbiter EUI team using the CentOs OS.

5.4.4.3 User account management

The ROC shall people directly involved in the ROC activities to have a dedicated user account on the *roc-dev* development server, as well as a dedicated space on the ROC data disk to store its personal data related to the project.

Convention concerning the server usage, e.g., user access and data storage quota, etc., must be reported by the ROC GSPM into the REGU.

The complete list of user accounts and access privileges shall be reported on the "ROC device access document".

The access to the ROC development and production servers shall be only possible via the SSH protocol and using LESIA LDAP account mechanism. Especially, the production server shall only be accessible from people labelled as "ROC system administrators".

5.4.4.4 Technical account management

In addition to the personnel user accounts, the following so-called "technical" accounts shall be created to manage and run the ROC pipelines.

Technical	Description	Development	Execution server	Comment
account		server		
roc_rdop	Technical account for the RPW Data and Operations Pipeline execution	roc-dev.obspm.fr	roc.obspm.fr	Access to this account is restricted to the ROC developer team only
roc_sgse	Technical account for the ROC SGSE execution	roc-dev.obspm.fr	roc.obspm.fr	Access to this account is restricted to the ROC developer team only
roc_rllp	Technical account for the RPW Low Latency Pipeline execution	roc-low.obspm.fr	roc-low.obspm.fr	Access to this account is restricted to the ROC developer team only
rocuser	Technical account used to have a generic read-only access to the Git repositories of the ROC			
roc_git	Technical account		gitlab.obspm.fr and	

Plan

- 42 / 56 -

used to	jra.obspm.fr	
synchronized		
ROC gitlab and		
JIRA issues		

Table 11. Technical accounts.

5.4.4.5 Root account management

The OS administration and maintenance of the servers and disks are ensured by the GIGL. However people needing to perform specific operations at the OS level can ask for a root access. These people shall be clearly identified and belong to the ROC system administrator team only. Any request for a root access shall be sent to the ROC GSPM.

5.4.4.6 ROC data access policy

All of the data produced by the ROC will be stored in dedicated data disks (see section 5.4.2.1). Access to the data disks will be possible from the ROC servers using the ZFS mounting system. Specific access privileges must be defined for each user. Some directories in the data disks will be also visible from Internet to allow people to retrieve data.

User access privileges must be reported into the "ROC device access management file".

5.4.4.7 RSS software programming languages

Most of the ROC software is based on the Python 3 programming language, which becomes both a major programming language, and a more and more used language in the astronomy community. The frontend part of the MUSIC Web tool will be developed using Javascript.

The following table gives the list of main ROC software, the programming language name and the main modules to be used for the development.

Software	Programming Languages	Main external modules/libraries	
ROC software			
RODP	Python 3 + Cython	numpy, SQLAlchemy	
LLVM	Linux BASH, Python 3 + Cython	numpy, SQLAlchemy	
MUSIC	Python 3 with Django framework	numpy, matplotlib, react	
	(backend) + Javascript (Frontend)		
ROC-SGSE	Python 3 + Cython	numpy, matplolib, SQLAlchemy,	
		PyQt5 (for the TV-SGSE)	
SimuSBM1	IDL		
Software			
SimuSBM2	IDL		
Software			
	RCS		
THR_CALBAR	IDL		
TDS_CALBA	IDL		
SCMCAL	IDL		
LFR_CALBUT	Python 3		
BICAS	Matlab 5		

Table 12. RSS software programming languages.

5.4.4.8 Database management systems

The following table presents the databases involved into the ROC activities and the associated management system.

Database	Functions	Management system
ROC-SGSE	Database of the ROC-SGSE	PostgreSQL
Test Database		
(TDB)		
ROC	ROC instance of the RPW IDB	PostgreSQL
Instrument		
Database		
(IDB)		
ROC Mission	Central database of the ROADS	PostgreSQL
Database		
(MDB)		
MEB SGSE	MEB GSE database	MySQL
Database		
RPW	RPW IDB	XML (LESIA PALISADE format) /
Instrument		PostgreSQL (MOC MiB format)
Database		
(IDB)		
Mission	Database used by the MOC to	PostgreSQL
information	perform the in-flight operations. It	
Base (MiB)	contains a copy of the RPW IDB.	

Table 13. List of databases involved in the ROC activities.

Note: in practice the ROC IDB will be included as an "idb" schema in the ROC MDB Postgres database.

5.4.4.9 Main software libraries

The following table presents the list of main software libraries that must be used to developed and run the RSS. The full list of software dependencies will have to be reported into the ROC Software Reuse File (SRF), as explained in the SPAP.

Library name	Short description
CDF	NASA CDF library
Cython	C for Python module
matplotlib	Mathematical plotting library for Python
питру	Scientific Python library
SPICE	NAIF SPICE Toolkit
SQLAlchemy	Database ORM module for Python
django	Python Web framework
react	Javascript library

Table 14. List of RSS main software libraries.

5.4.4.10 Software development and testing support tools

The ROC developer team shall use the virtual environment and the package mechanisms to develop, test and install the software written in Python 3, namely: RODP, ROC-SGSE and MUSIC (backend part) software. These mechanisms are flexible, robust and widely used in the developer community.

Unit tests must also be implemented into the RODP, ROC-SGSE and MUSIC software, in order to validate critical functions. The list of unit tests must be reported into the SVP.

The verification of the modifications in the source codes must rely on the Gitlab and Jenkins tool capabilities. Especially, each merging request on Gitlab shall trigger a run in Jenkins, in order to check that the code still works correctly (i.e., non-regression tests). Especially, software under Python shall use the *pytests, tox* and *hypothesis* modules to design and run the verification tests with Jenkins.

The tools in support to the validation must be reported in the SVP. Any specific procedure and/or convention related to the development and testing support tools must be reported by the ROC GSPM into the REG.

5.5 Software development, testing, validating and execution environments at ESOC

This section presents more specifically the software environments, which are related to the RSS instances to be deployed and run at the ESOC site during the NECP.

5.5.1 RSS operational infrastructure overview

During RPW-related NECP operations, the ROC must be able to run specific "secondary" instances of the RSS at the ESOC site.

Figure 6. RSS infrastructure at ESOC.

At the stage of the project, the detailed organization of the LEOP/NECP operations at MOC is not known; nevertheless, as shown on the figure above, we can reasonably assume the following scheme:

- One main PC is connected to the MOC DDS in order to retrieve, process and view RPW data flow in quasi-real time using the local RSS instance. In addition, it shall offer the possibility to easily distribute data files locally generated (e.g., L1/HK CDF data files), to other RPW people present on the site. Nevertheless, this action should not be done when the RSS is working (i.e., during critical phases of the operations).
- Extra monitors will be connected to the main PC to visualize data. Two screens in addition to the PC, may be confortable enough.
- The main PC will have to be connected to an external data disk, which shall perform regular backup of the PC content and data.
- Extra PCs, at least two, shall be planned in backup. Especially, the RSS will have to be installed and ready to be used in case of main PC failures. If an Internet connexion is possible, these PCs may also rely on the MUSIC Web tool at LESIA to view the data.

This equipment will have to be brought from the LESIA to the ESOC by the ROC team, and be installed by the latter with the support of the ESOC staff. To ensure as much as possible easy and quick transportation and deployment, the RSS instances will have to be installed and tested in advance (i.e., at LESIA) on laptops, with the typical system performances expected to run the RSS without latency (see RSSS for more details). Especially, they will have the capability to retrieve data from the MOC DDS interface, and to store data generated during the operations on the local hard disk.

In practice, only ROADS sub-system functionalities are required, and thus, the ROC does not expect to use ROC GSE in this case. In parallel, the primary instance might also start to retrieve and process data at LESIA.

5.5.2 RSS development, testing and validating infrastructure overview

The infrastructure for the development of the MOC RSS should be the same than for the LESIA instance. Nevertheless, the ROC GSPM will have to ensure that the technical specification allows users to install and run the RSS on PC laptop with the required system configurations.

At this stage of the project, the MOC team has not communicated information about how the RSS infrastructures can be tested and validated at the ESOC site. Nevertheless, MOC RSS instances will be tested on the dedicated laptops at LESIA, during the validation campaign, as explained in the SVP.

5.5.3 ROC hardware equipment

Table below gives the list of hardware equipment that the ROC team expects to use at ESOC site for LEOP/NECP RPW-related operations, including the main function and the minimum system configuration.

Device name	Function	Configuration	Comment
TBD	Main PC to run the RSS at MOC	Minimal configuration should be: • Processor: 2.3 GHz	

ROC Software Development

Plan

- 46 / 56 -

TBD	First backup computer, in case of main computer failure	 RAM: 16 Go Volume: 1To At least same config. than the main computer 	
TBD	Second backup computer, in case of first backup computer failure	• At least same config. than the main computer	
TBD	External data disk to backup data generated by the MOC RSS	• 2To	The external data disk will be connected to the main PC (or backup in case of failure)
TBD	First external monitor to be connected to the main computer	• At least 22'' size screen	
TBD	Second external monitor to be connected to the main computer	• At least 22" size screen	

Table 15. Hardware equipment for MOC RSS.

5.5.4 ROC hardware communication interfaces at the ESOC site

Since the RSS will be deployed and run on PCs at ESOC, the latter shall ensure that the ROC equipment can promptly retrieve from the MOC DDS and process the RPW data, at least for the main PC.

5.6 Software documentation plan

5.6.1 General

The software documentation plan presents the management of the ROC engineering documentation.

5.6.2 Software documentation identification

The software documentation identification shall follow the convention defined in the PMP.

5.6.3 Deliverable items

5.6.3.1 ROC deliverable documentation

The documentation concerning the ROC software is given in the PMP.

5.6.3.2 RCS deliverable documentation

Consult the section 4.7.1.5 for more details.

5.6.4 Software documentation standards

The software documentation shall follow the standards specified in the PMP.

Any additional procedures and rules concerning the software documentation shall be listed into the REG.

6 ROC SOFTWARE DELIVERY PLAN

This section presents all of the S/W products to be delivered to the ROC and by whom in preparation of the RPW ground segment activities. The following schedule shall always be consistent with the planning defined at project level in the PMP.

6.1 ROC software development planning

The ROC software development planning must be detailed in the *ROC planning file*, as defined in the PMP. Especially, the planning file must report the milestones relevant to the software development schedule, the tasks inter-dependencies and associated resources.

6.2 ROC software deliveries schedule

This section presents the ROC software deliveries schedule, in agreement with the project planning and constraints defined in the PMP.

6.2.1 RSS data package main releases schedule

The ROC plans to release six main versions of the RSS over the ROC planning. Major milestones in the activities at the project level motivate these releases. Especially, the ROC shall ensure the main functionalities are available to ensure the required tasks. The RSS functionalities can be read in the RSSS.

Note the RSS validation campaign should take place at least one month before the "ready-for-flight" version release (RSS4), in order to let the time to perform the Test Review Board (TRB), as defined in the SPAP.

The ground segment project manager shall ensure that the RSS validation campaign schedule, provided in the SVP, is consistent with the current schedule.

RSS release ID	RSS data package release name	Main required software units and related functionalities	Person in charge of the release	Release related deadline
RSS0	RSS "preliminary" version data package	 SBM1/SBM2 Algorithm Validation Software V1, ready for the ground DPU SBM detection algorithms validation campaign RPW Packet parsing library (RPL) preliminary version (compatible with the RPW IDB 2.2.3) 	X.Bonnin (ROC)	Beginning of the DPU SBM detection algorithms ground validation campaign
RSS1	RSS "EM2 calibrations" version data package	 Preliminary ROC-SGSE with functionalities ready to process and visualize the RPW for the EM2 blank calibration tests at CNES (Toulouse) "Hello world" version of the RPW LLVM 	X.Bonnin (ROC)	Beginning of the RPW EM2 blank calibration tests

ROC Software Development Plan

Ref: ROC-GEN-SYS-PLN-00015-LES lssue: 02 Revision: 03 Date: 17/11/2017 - 48 / 56 -

-/	 	

RSS2	RSS "PFM calibrations" version data package	- ROC-SGSE with functionalities ready to process and visualize the RPW and E- GSE stimuli data for the PFM thermal calibrations at LESIA (Meudon)	X.Bonnin (ROC)	Beginning of the RPW PFM thermal calibration
RSS3-0	test" version data package		(ROC)	SOV "0th E2E" test campaign
RSS3	RSS "CP E2E test" version data package	Preliminary version, ready for the MOC/SOC SOV E2E test, including: - Partial MUSIC Web tool capabilities (Procedures list viewing, importing and model validating/IOR creation and model validating, E-FECS and TMC data plotting, TM/TC visualization) - Full RPW LLVM expected capabilities (i.e., "processing+test" version) - SOC GFTS interface up and running - ROC-SGSE V2 - RODP "E2E" version, with partial data processing The data package shall include the following documents: - First draft of the ROC User Manual and Reference Guide (system requirements, installation process, tutorial for the FIGARO/FAUST/TV tool and for the RODP basic execution)	X.Bonnin (ROC)	Beginning of the SOV "CP E2E" test campaign
RSS4	RSS "ready for flight" version data package	Full validated version, ready for the commissioning and cruise phase operations, including: - Full processing of the RPW data products (including dissemination and archiving) - Full MUSIC Web tool capabilities, except for SISSI. - SOC/MOC DDS/GFTS interfaces up and running - RPW LLVM SOC and LESIA instances up and	X.Bonnin (ROC)	Launch

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

- 49	/ 56 -
------	--------

		running - ROC-SGSE mission instance ready to be used for operations - Advanced draft of the ROC User Manual and Reference Guide (all functionalities described, without SISSI tool)		
RSS5	RSS "fully operational" version data package	Fully operational RSS, including: - Full MUSIC tool expected capabilities - Full RODP tool expected capabilities - Full LLVM expected capabilities To be delivered at the end of the commissioning phase. - First issue of the ROC User Manual and Reference Guide (all functionalities covered)	X.Bonnin (ROC)	Beginning of the CP

 Table 16. RSS data package release main releases schedule.

6.2.2 ROC software main deliveries schedule

Table below gives the main deliveries of all ROC software products.

The RSS release dependencies must be consistent with both the project and dev. planning. Especially, the LLVM delivery shall be anticipated w.r.t. the SOC LLVM delivery schedule (see PMP). In the same way, the effective integration of the RCS into the RSS shall be realized and validated prior to the RSS release. In another word, the RCS team shall plan to deliver their software to the ROC enough time before the release.

Detailed schedule will have to be reported and kept up-to-date in the ROC planning file.

Software deliverable	Main available capabilities	Software validation leader	Developer(s) in charge	RSS release dependencies
	ROCO	ise		
SimuSBM1 software V1	Version for the SBM1 detection RPW DPU software validation on-ground campaign	Xavier Bonnin (ROC)	- Xavier Bonnin (with the support of Oksana Kruparova)	Delivered with the RSS0
SimuSBM1 software V2	Second version to be used for SBM1 detection algorithm validation and optimization in-flight.	Xavier Bonnin (ROC)	- Antonio Vecchio	Delivered with the RSS5

ROC Software Development

	Version for the SBM2	Xavier	- Xavier	Delivered with
	detection RPW DPU software	Bonnin	Bonnin (with	the RSS0
	validation on-ground	(\mathbf{ROC})	the support	
SimuSBM2	campaign	(ROC)	of Milan	
software V1.0.0	campaign		Maksimovio	
			and Olgo	
			Alexandresse)	
	Second version to be used for	Varian	Antonio	Delivered with
CimuSDM2	SDM2 detection algorithm	Donnin	- Alitolilo	the DSS5
SIMUSBINIZ	SBM2 detection algorithm	Bonnin	veccnio	the RSSS
software v2.0.0	in flight	(KUC)		
	First version of the DDW	Variar	Thiormy	Delivered with
	Print version of the RP w	Aavier	- Therry	the DSSO
	Packet Parsing Library.	Bonnin	Sauziere	the KSS0
RPL V0.1.0	Compliant with the IDB	(ROC)		
	2.2.3. To be used in priority			
	by the ROC-SGSE.	37 .		D 1' 1 '4
	Version to be used for the	Xavier	- Manuel	Delivered with
DOC SCOP VI	EM2 blank tests calibration	Bonnin	Duarte	the KSS1
RUC-SUSE VI	campaigns at CNES	(ROC)		
	(Toulouse). Includes the RPL			
		V.		D 1' 1 '4
	Version to be used for the	Xavier	- Manuel	Delivered with
	PFM thermal calibration	Bonnin	Duarte,	the RSS2
	campaigns at LESIA	(ROC)	- Xavier	
ROC-SGSE V2	(Meudon).		Bonnin (after	
			M.Duarte	
			leave)	
RPW Low	First "Hello World" VM	Richard	- Yavier	Delivered with
Latency Virtual	configuration and test version	Carr(SOC)	Bonnin	the RSS1
Machine	configuration and test version.		Domini	
(I I VM) V0 1 0				
	Second "processing data"	Richard	- Sonny Lion	Delivered with
RPW I ow	version	Carr (SOC)	Sonny Lion	the RSS3-0
Latency Virtual	Delivered with an un-to-date			
Machine	RPW Low Latency Data			
(LLVM)	Description Document			
	(LIDDD) and "Testcard"			
V 0.7X.0	scenario data LL01 CDF			
	Full version	Richard	- Sonny Lion	Delivered with
	"processing+test"	Carr (SOC)		the RSS3
RPW Low	- Fully compliant and	cuii (500)		
Latency Virtual	validated			
Machine	Delivered with the first issue			
(LLVM) V1.0.0	of the RPW LLVM Design			
	Document and User Manual			
	RCS – THR	CALBAR		l
THR CALBAR	Software version being able	Milan	- Antonio	Delivered with

- 51 / 56 -

preliminary version	of producing ROC-SGSE THR preliminary L2S CDF files. Delivered with the THR L2S master CDF files	Maksimovic (LESIA)	Vecchio - Quynh Nhu Nguyen	the RSS2
THR_CALBAR "processing" version	Software version being able of producing ROC-SGSE THR L2S CDF files. Delivered with the THR L2S master CDF files, the SRS issue 1 and the draft of SUM.	Milan Maksimovic (LESIA)	- Antonio Vecchio - Quynh Nhu Nguyen	Delivered with the RSS3
THR_CALBAR "ready-to- flight" version	Software version being able of producing SolO RPW THR L2 CDF files – ROC interface compliant according to RCS ICD. Delivered with the THR L2 master CDF files, SRS issue 1 and SUM issue 1.	Milan Maksimovic (LESIA)	- Lorenzo Matteini - Quynh Nhu Nguyen	Delivered with the RSS4
THR_CALBAR "fully operational" version	Fully validated version of the software after commissioning.	Milan Maksimovic (LESIA)	 Lorenzo Matteini Quynh Nhu Nguyen 	Delivered with the RSS5
	RCS – LFR	CALBUT		
LFR_CALBUT preliminary version	Software version being able of producing ROC-SGSE LFR preliminary L2R/L2S CDF files. Delivered with the LFR L2R/L2S master CDF files.	Thomas Chust (LPP)	- Bruno Katra	Delivered with the RSS2
LFR_CALBUT "processing" version	Software version being able of producing ROC-SGSE LFR L1R/L2S-non-WF CDF files. Delivered with the LFR L1R/L2S master CDF files, the SRS issue 1 and the draft of SUM.	Thomas Chust (LPP)	- Bruno Katra	Delivered with the RSS3
LFR_CALBUT "ready-to- flight" version	Software version being able of producing SolO RPW LFR L1R/L2-non-WF CDF files – ROC interface compliant according to RCS ICD. Delivered with the LFR L1R/L2 master CDF files, SRS issue 1 and SUM issue 1.	Thomas Chust (LPP)	- Bruno Katra - Rodrigue Piberne	Delivered with the RSS4
LFR CALBUT	Fully validated version of the	Thomas	- Bruno	Delivered with

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

Ref: ROC-GEN-SYS-PLN-00015-LES Issue: 02 Revision: 03 Date: 17/11/2017

- 52 / 56 -

"fully	software after commissioning.	Chust (LPP)	Chust (LPP) Katra,		
operational"			- Rodrigue		
Version	PCS TDS	CAL DA			
	$\mathbf{KCS} = \mathbf{IDS}$		D	Daliana darrida	
TDS_CALBA preliminary version	of producing ROC-SGSE TDS preliminary L2R/L2S CDF files. Delivered with the TDS L2R/L2S master CDF files.	Jan Soucek (IAP)	- David Pisa	the RSS2	
TDS_CALBA "processing" version	Software version being able of producing ROC-SGSE TDS L1R/L2S-non-WF CDF files. Delivered with the LFR L1R/L2S master CDF files, the SRS issue 1 and the draft of SUM.	Jan Soucek (IAP)	- David Pisa	Delivered with the RSS3	
TDS_CALBA "ready-to- flight" version	Software version being able of producing SolO RPW LFR L1R/L2-non-WF CDF files – ROC interface compliant according to RCS ICD. Delivered with the LFR L1R/L2 master CDF files, SRS issue 1 and SUM issue 1.	Jan Soucek (IAP)	- David Pisa	Delivered with the RSS4	
TDS_CALBA "fully operational" version	Fully validated version of the software after commissioning.	Jan Soucek (IAP)	- David Pisa	Delivered with the RSS5	
RCS – BICAS					
BICAS preliminary version	Software version being able of producing ROC-SGSE TDS/LFR preliminary L2S-E- WF CDF files. Delivered with the TDS/LFR L2S-E-WF master CDF files.	Andris Vaivads	- Erik Johansson	Delivered with the RSS2	
BICAS "processing" version	Software version being able of producing ROC-SGSE TDS/LFR L2S-E-WF CDF files. Delivered with the TDS/LFR L2S-E-WF master CDF files, the SRS issue 1 and the draft of SUM.	Andris Vaivads	- Erik Johansson	Delivered with the RSS3	
BICAS "ready- to-flight"	Software version being able of producing SolO RPW	Andris Vaivads	- Erik Johansson	Delivered with the RSS4	

ROC Software Development

Ref: ROC-GEN-SYS-PLN-00015-LES Issue: 02 Revision: 03 Date: 17/11/2017

Vorcion	TDS/LED L2 E WE CDE				
version	TDS/LFR L2-E-WF CDF				
	nies – ROC interface				
	compliant according to RCS				
	ICD.				
	Delivered with the TDS/LFR				
	L2-E-WF master CDF files,				
	SRS issue 1 and SUM issue 1.				
BICAS "fully	Fully validated version of the	Andris	- Erik	Delivered with	
operational"	software after commissioning	Vaivads	Johansson	the RSS5	
version	sortware arter commissioning.	v ui v uus	Jonunsson		
Version	RCS – SC	MCAL	L		
	Software version being able	Matthieu	- Jean-Yves	Delivered with	
	of producing ROC-SGSE	Kretzschmar	Brochot	the RSS2	
SCMCAL	TDS/LFR preliminary L2S-B-		- Gamil		
preliminary	WF CDF files		Cassam-		
version	Delivered with the TDS/LFR		Chenai		
	L2S-B-WF master CDF files.				
	Software version being able	Matthieu	- Jean-Yves	Delivered with	
	of producing ROC-SGSE	Kretzschmar	Brochot	the RSS3	
SCMCAT	TDS/LFR L2S-B-WF CDF		- Gamil		
SCMCAL	files.		Cassam-		
processing	Delivered with the TDS/LFR		Chenai		
version	L2S-B-WF master CDF files,				
	the SRS issue 1 and the draft				
	of SUM.				
	Software version being able	Matthieu	- Jean-Yves	Delivered with	
	of producing SolO RPW	Kretzschmar	Brochot	the RSS4	
	TDS/LFR L2-B-WF CDF		- Gamil		
SCMCAL	files – ROC interface		Cassam-		
"ready-to-	compliant according to RCS		Chenai		
flight" version	ICD.				
	Delivered with the TDS/LFR				
	L2-B-WF master CDF files,				
	SRS issue 1 and SUM issue 1.				
		Matthieu	- Jean-Vves	Delivered with	
SCMCAL	Fully validated version of the	Kretzschmar	Brochot	the RSS5	
"fully	software after commissioning	1 Cl Ct25 Clillian	- Gamil		
operational"	sortinate arter commissioning.		Cassam-		
version			Chenai		
RODP					
	- Partial data processing	X.Bonnin	X.Bonnin	Delivered with	
test" version	capabilities (LZ, L0, L1/HK		S.Lion	the RSS3	
	productions)		Q.N. Nguyen		
RODP "ready-	- Full data processing	X.Bonnin	X.Bonnin	Delivered with	
for-flight"	capabilities (TM packet,		S.Lion	the RSS4	
version	TM/TC report and ancillary		Q.N. Nguyen		

- 54 / 56 -

	data retrieval, LZ, L0, L1/HK and L2 productions, summary plots and ancillary data processing, dissemination and archiving) - Automated data monitoring and user notification			
RODP "fully	Fully validated version of the	X.Bonnin	X.Bonnin	Delivered with
operational"	software after commissioning.		S.Lion	the RSS5
version			Q.N. Nguyen	
	MUSIC (including TRA	C, POCA and	INCA)	
MUSIC "preliminary" version	- TRAC preliminary version to compute RPW TM rate	X.Bonnin (ROC)	T.Sauzière	Delivered with the RSS0
MUSIC "E2E test" version	 FIGARO: flight procedure visualization and importation FAUST: MTP/STP IOR generation from sequences OPERA: E-FECS/TMC data visualization over MTP timeline 	X.Bonnin (ROC)	S.Lion Q.N Nguyen A.Aboubacar N.Fuller	Delivered with the RSS3
MUSIC "ready- for-flight" version	 FIGARO: full capabilities FAUST: full capabilities OPERA: full capabilities SISSI: preliminary version (SBM1/SBM2 list visualisation) 	X.Bonnin (ROC)	S.Lion Q.N Nguyen A.Aboubacar N.Fuller	Delivered with the RSS4
MUSIC "fully operational" version	Fully functional, validated version of the software after commissioning.	X.Bonnin (ROC)	S.Lion Q.N Nguyen A.Aboubacar N.Fuller	Delivered with the RSS5

Table 17. ROC software main deliveries schedule.

7 LIST OF TBC/TBD/TBWS

TBC/TBD/TBW					
Reference/Page/Location	Description	Туре	Status		

8 DISTRIBUTION LIST

LISTS	Tech	_LESIA
See Contents lists in "Baghera Web": Project's informations / Project's actors / RPW_actors.xls		_MEB
		_RPW
and tab with the name of the list	[Lead	-]Cols
or NAMES below	Scien	ce-Cols

INTERNAL

LESIA CNRS

x	M. MAKSIMOVIC
x	Y. DE CONCHY
x	X. BONNIN
х	QN NGUYEN
	B. CECCONI
x	A. VECCHIO
x	S. LION
x	A. ABOUBACAR
	x x x x x x x x

х	N. FULLER

EXTERNAL (To modify if necessary)

			_		
		C. FIACHETTI			
	х	E. BELLOUARD			
		R.LLORCA-CEJUDO		ASI/CSRC	
		E.LOURME			
CNES		M-O. MARCHE			
	х	E.GUILHEM			
	x	E. LE DE			
	х	M. ROUZE		IAP	
	х	J-M. TRAVERT			
	х	D. RAULIN			
		L. BYLANDER			
		C.CULLY			
IRFU		A.ERIKSSON		IWF	
	х	E.JOHANSSON			
	х	A.VAIVADS			
	х	Y. KHOTYAINTSEV			
	x	JY. BROCHOT			
		G. JANNET			
LPC2E		T.DUDOK de WIT			
	x	M. KRETZSCHMAR		LPP	
	x	G. CASSAM-CHENAI			
SSL		S.BALE			

		J.BRINEK
AsI/CSRC		P.HELLINGER
		D.HERCIK
		P.TRAVNICEK
		J.BASE
		J. CHUM
		I. KOLMASOVA
IAP		O.SANTOLIK
	x	J. SOUCEK
	x	D. PISA
		G.LAKY
		T.OSWALD
IWF		H. OTTACHER
		H. RUCKER
		M.SAMPL
		M. STELLER
	x	T.CHUST
		A. JEANDET
		P.LEROY
LPP		M.MORLOT
	x	B. KATRA
	х	R. PIBERNE