
ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019

ROC Verification and Validation Plan
ROC-GEN-SYS-PLN-00040-LES

Iss.02, Rev.02

Prepared by Date Signature

Sonny Lion
RPW ground segment validation engineer

Verified by Date Signature

Xavier BONNIN and
Stéphane Papais
RPW ground segment project and software
manager

Approved by Date Signature

Xavier BONNIN
RPW ground segment project manager

CLASSIFICATION PUBLIC � RESTRICTED �

CNRS-Observatoire de PARIS
Section de MEUDON-LESIA

5,Place Jules Janssen
92195 Meudon Cedex - France

xbonnin
Tampon

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: i

Change Record

Issue Rev. Date Authors Modifications
0 0 04/02/2016 X. Bonnin First draft
1 0 07/11/2017 S. Lion Sphinx conversion - validation approach -

risks identification and mitigation
2 0 10/12/2018 S.Lion Major changes of the document content
2 1 10/12/2018 S.Lion Use Gitlab instead of JIRA
2 2 20/12/2019 S.Lion and X.Bonnin Update list of test cases - Update test case

convention - Update validation procedures -
Update AD/RD issue/rev.

Acronym List

Acronym Definition
CCSDS Consultative Committee for Space Data Systems

CDF Common Data Format
CUC CCSDS Unsegmented time Code
HF High Frequency
ICD Interface Control Document
LF Low Frequency
LL Low Latency

MEB Main Electronic Box
PA Pre-Amplifier

RLLP RPW Low Latency Pipeline
ROC RPW Operation Centre
ROT RPW Operation Toolkit
RPW Radio and Plasma Waves instrument
SCM Search Coil Magnetometer
SGS Science Ground Segment

SGSE Software Ground Support Equipment
SOC Science Operation Centre
TDS Time Domain Sampler
THR Thermal Noise and High Frequency Receivers
ssh Secure Shell

SWF Snapshot Waveform
XML eXtended Markup Language

i

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: ii

Contents

1 General 1
1.1 Scope of the document . 1
1.2 Applicable Documents . 2
1.3 Reference Documents . 2
1.4 About this document . 4

1.4.1 Access policy . 4
1.4.2 Terminology . 4

2 Validation plan 5
2.1 Context and philosophy . 5
2.2 Definitions . 5

2.2.1 Unit tests . 5
2.2.2 Integration tests . 5
2.2.3 Validation tests . 6

2.3 Convention . 6
2.3.1 Validation campaign naming . 6

2.4 Overall approach . 6
2.4.1 Overview . 6
2.4.2 Perimeter . 7

2.4.2.1 At the ESA level . 7
2.4.2.2 At the RPW level . 7
2.4.2.3 At the ROC level . 7

2.4.3 Implementation . 7
2.4.3.1 Involved software . 7
2.4.3.2 Tools, Techniques and Methods . 8
2.4.3.3 Procedures . 8

2.4.4 Expected Documentation . 9
2.4.4.1 Validation campaign Test plan . 9
2.4.4.2 Validation campaign test card . 10
2.4.4.3 Validation campaign test report . 11

2.4.5 ROC validation activity planning overview . 11
2.4.5.1 Schedule for the ROC Software System validation campaigns (RSSVC) 12
2.4.5.2 Schedule for the ESA tests . 13

2.4.5.2.1 Schedule related to the ROC-SOC interfaces tests 13
2.4.5.2.2 Schedule related to the SOC RPW LLVM instance tests . . . 13

CONTENTS ii

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: iii

2.4.5.2.3 Schedule related to the ROC-MOC interfaces tests 13
2.4.6 Resources . 13

2.4.6.1 Hardware resources . 14
2.4.6.2 Software resources . 14

2.4.7 Responsibilities . 14
2.4.7.1 Key personnel . 14
2.4.7.2 Test writing . 15

2.4.7.2.1 Automatic tests . 15
2.4.7.2.2 Beta testing procedures . 15
2.4.7.2.3 Verification procedures . 15

2.4.7.3 Test platform . 15
2.4.7.4 Execution and verification of tests . 16
2.4.7.5 LLVM . 16
2.4.7.6 Instrument commanding . 16

2.4.8 Personnel requirements . 16
2.4.9 Risks . 17

2.4.9.1 Risks identification . 17
2.4.9.2 Contingency plans . 18

2.4.9.2.1 Network issues . 18
2.4.9.2.2 Power issues . 18
2.4.9.2.3 Server breakdown recovery 18
2.4.9.2.4 Computer breakdown recovery 18
2.4.9.2.5 Gitlab backup . 19

2.4.9.2.5.1 Software sources and issues management 19
2.4.9.2.5.2 Unit, acceptance and regression tests 19

2.5 Validation tasks identification . 19
2.5.1 Test Reporting . 19
2.5.2 Test versioning . 19
2.5.3 Controls . 20
2.5.4 Requirements monitoring . 20

2.6 Validation strategy . 20
2.6.1 Unit testing strategy . 20
2.6.2 Continuous integration et non-regression strategies 20

2.7 Validation environment . 22
2.7.1 Continuous integration . 22
2.7.2 Validation platform . 22
2.7.3 Test data . 23

2.8 Interfaces validation . 23
2.8.1 MOC interfaces validation . 23
2.8.2 SOC interfaces validation . 24

3 Verification plan 25
3.1 Concept and definition . 25
3.2 Control procedures . 25
3.3 Identification of verification activities . 25

iii CONTENTS

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: iv

3.3.1 Test case naming . 25
3.3.2 Test case description . 26
3.3.3 Verification procedures . 26

3.3.3.1 Data retrieval . 26
3.3.3.2 Data production . 27

3.3.3.2.1 Producing RPW data files 27
3.3.3.2.2 Processing mission ancillary data files 27
3.3.3.2.3 Producing RPW Low Latency data 27
3.3.3.2.4 Validating RPW science data 27
3.3.3.2.5 Re-processing RPW data 28
3.3.3.2.6 Converting on-board time 28

3.3.3.3 Data dissemination . 28
3.3.3.3.1 Distributing preliminary RPW data 28
3.3.3.3.2 Distributing definitive data 28
3.3.3.3.3 Distributing ancillary data 28

3.3.3.4 Data storage and archiving . 29
3.3.3.4.1 Storing data at LESIA . 29
3.3.3.4.2 Archiving RPW data . 29

3.3.3.5 Data visualization . 29
3.3.3.6 Instrument commanding . 29

3.3.3.6.1 Requesting Medium-Term Planning (MTP) instrument op-
erations . 29

3.3.3.6.2 Requesting Short-Term Planning (STP) instrument operations 30
3.3.3.6.3 Requesting non-routine instrument operations 30
3.3.3.6.4 Producing, deliverying and using instrument command se-

quences . 30
3.3.3.7 Instrument monitoring . 30

3.3.3.7.1 Monitoring instrument data 30
3.3.3.7.2 Checking instrument command execution 31

3.3.3.8 Ground support . 31
3.3.3.9 ROC infrastructure monitoring . 31
3.3.3.10 Communication and science support 31
3.3.3.11 Non regression tests . 31

3.3.4 Quality control . 32

4 List of TBC/TBD/TBWS 33

5 Distribution list 34

6 Appendix A - Testing guidelines 35
6.1 Documentation of tests . 35
6.2 Python Testing guidelines . 35
6.3 Javascript Testing guidelines . 36

7 Appendix B - External tools, softwares and packages 38

CONTENTS iv

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: v

8 Appendix C - Beta Testing Report Template 39
8.1 Functional Evaluation . 39
8.2 Specific Bugs and Problems Noted . 39
8.3 Other Generic Topics . 39

v CONTENTS

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: vi

List of Figures

2.1 Validation activity planning overview . 12
2.2 Continuous integration flow . 21
2.3 Continuous integration environment . 22
2.4 Pre-production environment . 23

LIST OF FIGURES vi

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: vii

List of Tables

1.1 Applicable documents . 2
1.2 Reference documents . 3

2.1 Validation campaigns planning . 12
2.2 Personnel requirements . 17
2.3 Risk matrix . 18

3.1 Nomenclature . 26
3.2 Data retrieval . 26
3.3 RPW data files . 27
3.4 Low Latency data . 27
3.5 Re-processing . 28
3.6 On-board time . 28
3.7 Preliminary data . 28
3.8 Ancillary data . 28
3.9 Storing at LESIA . 29
3.10 Archiving RPW data . 29
3.11 Visualizing data . 29
3.12 MTP instrument operations . 29
3.13 STP instrument operations . 30
3.14 Non-routine instrument operations . 30
3.15 Instrument command sequences . 30
3.16 Instrument data . 30
3.17 Command execution . 31
3.18 Ground support . 31
3.19 Infrastructure monitoring . 31

7.1 External tools, softwares and packages . 38

8.1 Functional Evaluation . 39
8.2 Specific Bugs . 39

vii LIST OF TABLES

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 1

1 General

1.1 Scope of the document

This document presents the verification and validation plan of the RPW Operation Centre (ROC).

The ROC verification and validation plan (RVVP) provides the definition of organizational and manage-
ment approach to the implementation of the verification and validation activities for the centre.

The present document does not cover the following validation activities:

• The validation tests of the data exchange interfaces between the ROC and the Solar Orbiter Mis-
sion Operations Centre (MOC) and Science Operations Centre (SOC) [AD5], which is under the
responsibility of the European Space Agency (ESA).

• The validation tests performed in the framework of the System Operation Validation (SOV) and
the System Validation Test (SVT) campaigns [RD5].

• The validation of the RPW Low Latency Virtual Machine (LLVM) [RD4], which is operated by
the SOC.

Besides, the verification and validation plan related to the RPW data products is described in the DVVP
[RD?].

1 CHAPTER 1. GENERAL

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 2

1.2 Applicable Documents

Tab. 1.1: Applicable documents
Mark Reference/Iss/RevTitle of the document Authors Date
AD1 ROC-GEN-MGT-

PLN-00013-
LES/1/4

ROC Project Management
Plan (PMP)

Yvonne
de Conchy -
Xavier Bonnin

20/12/2016

AD2 ROC-GEN-SYS-
PLN-00040-
LES/2/3

ROC Software Development
Plan

Xavier Bonnin 11/2017

AD3 ROC-GEN-OTH-
NTT-00036-
LES/1/0

ROC Project Glossary of
terms

Xavier Bonnin 13/09/2017

AD4 ROC-GEN-MGT-
QAD-00033-
LES/1/3

ROC Software Assurance
/Product Assurance Plan
(SPAP)

Stephane Pa-
pais

26/09/2019

AD5 SOL-SGS-TS-
0006/1/0

Solar Orbiter Instrument
Teams - SOC Test Specifica-
tion

Nana Bach -
Christopher J.
Watson

30/08/2017

AD6 ROC-GEN-SYS-
PLN-00002-
LES/2/0

ROC Concept Implementa-
tion Requirements Document
(CIRD)

X.Bonnin 07/05/2019

1.3 Reference Documents

This document is based on the documents listed in the following table:

1.2. APPLICABLE DOCUMENTS 2

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 3

Tab. 1.2: Reference documents
Mark Reference/Iss/RevTitle of the document Authors Date
RD1 ROC-GEN-SYS-

SPC-00026-
LES/1/2

ROC Software System Speci-
fication (RSSS)

X.Bonnin 14/10/2019

RD2 SOL-ESC-PL-
00001/1/1

Solar Orbiter Mission Imple-
mentation Plan (MIP)

I.Tanco 31/12/103

RD3 ROC-GEN-SYS-
SPC-00036-
LES/1/0

ROC Software System Design
Document (RSSDD)

X.Bonnin 11/2017

RD4 SOL-SGS-TN-
0006/1/0

SOC Engineering Guidelines
for External Users (SEGU)

R.Carr 04/03/2015

RD5 SOL-ESC-IF-
05010/1/2

Planning Interface Control
Document (PLID)

L.Michienzi 07/2015

RD6 SOL-SGS-ICD-
0006/1/1

Extended Flight Events and
Communications Skeleton (E-
FECS) file ICD

C.Watson 24/03/2017

RD7 SOL-SGS-ICD-
0003/1/1

Solar Orbiter Instrument
Operation Request Interface
Control Document (IOR ICD)

C.Watson 07/03/2019

RD8 SOL-SGS-ICD-
0007/1/1

Solar Orbiter Telemetry Corri-
dor ICD

C.Watson 17/04/2019

RD9 SOL-SGS-TN-
0017/0/2

SOC-Provided Ancillary Data
for Solar Orbiter

A.Walsh 18/09/2017

RD10 ROC-PRO-PIP-
ICD-00037-
LES/1/2

RPW Calibration Software
Interface Control Document
(RCSICD)

M.Duarte,
X.Bonnin

05/06/2019

RD11 ROC-GEN-SYS-
NTT-00019-
LES/2/0

ROC Engineering Guidelines
for External Users (REGU)

X.Bonnin 11/2017

RD12 ROC-GEN-SYS-
NTT-00008-
LES/1/3

ROC Engineering Guidelines
(REG)

X.Bonnin 09/11/2016

RD13 ROC-TST-OTH-
NTT-00073-
LES/1/0

ROC Test Plan Template X.Bonnin 06/11/2018

RD14 ROC-GEN-SYS-
URD-00064-
LES/1/0

ROC User Requirements Doc-
ument (URD)

RPW Team 07/05/2019

RD15 ROC-GEN-SCI-
PLN-00077-
LES/01/00

RPW science data verification
and validation plan (DVVP)

X.Bonnin and
S.Lion

27/05/2019

3 CHAPTER 1. GENERAL

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 4

1.4 About this document

1.4.1 Access policy

The present document is accessible without any restriction.

Any modification of this document must be approved by the RPW Ground Segment Project Man-
ager before publication.

1.4.2 Terminology

All terms used in this document, and which are not listed in the table below must follow the definition in
[AD3].

1.4. ABOUT THIS DOCUMENT 4

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 5

2 Validation plan

2.1 Context and philosophy

The ROC will be in charge of supervising the ground segment for the RPW instrument on-board Solar
Orbiter ESA mission.

In this context, the centre has to implement a set of tools, called ROC Software System (RSS), in order
to ensure the functions of the ground segment.

Concerning the validation process for the Solar Orbiter instrument ground segments, it is assumed that:

• There will be no formal review of the instrument ground segment by ESA before the launch.

• There will be no formal validation of the instrument ground segment design by ESA, outside the
scope of the interface validation tests (see the ROC Project Management Plan (PMP) [AD1] for
the list of tests). Especially, the payload ground segments will be considered as “ready-for-flight”
from the ESA point of view, as soon as they have successfully passed these tests.

Considering the two assumptions and as requested in the ROC Software Assurance/Product Assurance
Plan (SPAP) [AD4], the ROC shall plan to validate its infrastructure and ensure the compliance with
the expected top-level requirements, as defined in the ROC Concept and Implementation Requirements
(CIRD) [AD6].

2.2 Definitions

2.2.1 Unit tests

Unit testing is the phase in which individual units of source code are tested to determine whether they
are fit for use. The unit testing strategy is described in the section Validation strategy.

2.2.2 Integration tests

Integration testing is the phase in which individual software modules are combined and tested as a group
to expose defects in the interfaces and in the interactions between integrated components or systems.

5 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 6

The integration testing strategy is described in the section Continuous integration et non-regression
strategies.

2.2.3 Validation tests

The validation testing phase ensures that the software meets the requirements defined in the CIRD [AD6],
the RSSS [RD1] and the URD [RD14]. The validation testing strategy is described in the section Vali-
dation strategy.

2.3 Convention

2.3.1 Validation campaign naming

The RSS Validation campaigns (RSSVC) shall be uniquely identified using the following naming con-
vention:

ROC_RSSVC<rss-version>_V<iteration>

where:

• <rss-version> is a string identifying the RSS version (3, 4 or 5);

• <iteration> is a 2-digits integer starting from 01 and incremented by 1 for each campaign rerun.

2.4 Overall approach

2.4.1 Overview

A validation campaign shall be scheduled before each major release (see section ROC validation activity
planning overview for details). It shall consist of running series of tests, which permit to verify the
compliance with expected requirements.

A validation campaign requires to define:

• List of requirements to be validated for the given release

• List of requirement-related test cases

• People involved and expected roles

• Expected inputs and outputs (data, documentation)

• Expected environment (hardware, software)

• Detailed planning

2.3. CONVENTION 6

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 7

All of this information will have to be reported in a dedicated test plan (see section Validation campaign
Test plan).

Each test case will have to be fully described in testcard file, as explained in the section Validation
campaign Test plan, and following the unit, integration and validation test levels, as defined in the next
section.

2.4.2 Perimeter

2.4.2.1 At the ESA level

The validation of the interface between ESA centres and ROC is outside of the scope of this document.

However, as a component of the Science Ground Segment (SGS) of Solar Orbiter, the ROC is involved
in validation test campaigns driven by ESA. These tests mainly concern the data exchanged between
the ROC and the Solar Orbiter MOC and SOC, as well as the related interfaces. Although the ROC
is not in charge, it will have to support ESA in the preparation, execution and analyzing of these tests.
Additionaly, the ROC will have to deliver and collaborate with the SOC team, concerning the validation
tests of the deployment and execution of the RPW LLVM [RD4] at the ESAC site (Madrid, Spain).
All of the documentation related to these validation tests (i.e., test plan, test report) will be issued by
ESA. Nevertheless, the ROC may write for some of these tests internal documentation to fully cover the
activity at RPW-level.

2.4.2.2 At the RPW level

The validation of the instrument performance and calibration is outside of the scope of this document.

Nevertheless, the ROC will have to validate the RPW data products, as explained in the DVVP.

2.4.2.3 At the ROC level

The validation of the RSS implies the validation of its software units, with their own external/internal
interfaces and data products. Besides, the ROC shall plan verifications of the RPW Calibration Software
(RCS), delivered by the RPW sub-systems teams, namely: THR, TDS, LFR, SCM and Bias Lead-CoI
teams.

2.4.3 Implementation

2.4.3.1 Involved software

The validation campaigns shall permit to ensure the compliance of ROC software with the specification
defined in the RSSS [RD1] and URD [RD14].

7 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 8

It concerns at least the following software units: - ROC Operations and Data Pipeline (RODP) - RPW
Calibration Software (RCS) - ROC Software Ground Support Equipment (ROC-SGSE) - Monitoring and
control sub-system User Interfaces (MUSIC)

2.4.3.2 Tools, Techniques and Methods

References about tools, software and packages discussed in this section are available in Appendix B.

N.B. The version of the tools used for each campaign shall be clearly indicated in the related test plan.

At the system level, the validation relies on the following tools:

• Gitlab - A web platform used for software versioning and issue tracking. Gitlab CI application
shall be also used to run continuous integration

• Docker - A container platform used to deployed and run software in an isolated environment

• locust - A python utility to do distributed load testing used to perform stress tests on the MUSIC
Web tools.

• Confluence - A collaborative wiki platform.

For ROC software written in Python:

• Pytest - A framework that makes it easy to write small unit tests as well as complex functional
testing.

• hypothesis - A library to parametrize tests and simply generate random data matching given spec-
ifications.

For ROC software written in Javascript:

• Mocha - A flexible test runner that can be used to run JavaScript tests on the server or in the
browser.

• Chai - An assertion library, similar to Node’s build in assert that can be used in browser.

• Enzyme - A JavaScript Testing utility for React that makes it easier to assert, manipulate, and
traverse React Components.

N.B. Gitlab is hosted in a remote server maintained the DIO

2.4.3.3 Procedures

The following steps shall always be performed prior to each campaign:

• Issuing the test plan related to the validation campaign.

• Listing the test cases to be run for the campaign and creation of the corresponding set of testcard
files.

2.4. OVERALL APPROACH 8

https://about.gitlab.com/
https://www.docker.com/
https://docs.locust.io/en/stable/
https://www.atlassian.com/software/confluence/
https://pypi.python.org/pypi/pytest
https://pypi.python.org/pypi/hypothesis
https://github.com/mochajs/mocha
https://github.com/chaijs/chai
https://github.com/airbnb/enzyme

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 9

• Listing the version of the software units to validate. Especially, the version used for the validation
shall be clearly tagged on the software Git repository.

• Creation of a new campaign branch and issue label using the ROC Validation group on the Gitlab
server (https://gitlab.obspm.fr/ROC/Validation), keeping only the selected test cases;

• Compilation, automatic tests and deployment of the software units on the validation environment.

Once the validation platform is deployed, the campaign takes place as follow:

• execution of the identified test cases and generation of expected data products and reports. The
test cards shall be filled at this stage;

• analysis of the test results;

• generation of the validation report;

• archiving of test resources;

• cleaning of the validation platform.

If anomalies are detected, a second full or partial validation test campaign can be carried out once the
investigation has been completed and corrections fixed:

• Identification of a new Git revision;

• Generation and deployment of the new version on the validation platform;

• Rerun of all test cases to ensure non regression;

• Update of the validation report.

• Archiving of the new test resources;

• Cleaning of the validation platform.

2.4.4 Expected Documentation

The ROC validation campaign documentation, i.e. test and validation reports, will have to be stored in the
ROC documentation management system (DMS): https://ged.obspm.fr/j_obspm/docbase/topic/browse_
classic?topicID=T357&timeID=1541493255913.

No documentation is requested by ESA concerning these campaigns.

2.4.4.1 Validation campaign Test plan

A validation campaign test plan shall be written in preparation of each validation campaign.

It shall provide:

• The test design (overview, responsibilities, environment and prerequisites). Especially, the ROC
software name and version involved shall be listed in this section.

9 CHAPTER 2. VALIDATION PLAN

https://gitlab.obspm.fr/ROC/Validation
https://ged.obspm.fr/j_obspm/docbase/topic/browse_classic?topicID=T357&timeID=1541493255913
https://ged.obspm.fr/j_obspm/docbase/topic/browse_classic?topicID=T357&timeID=1541493255913

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 10

• The test organization (overview, schedule, responsibility and related reviews)

• The test definition (input data, preconditions, post-conditions, success criteria and detailed test
procedure). This section shall also give the list of the test cards that will be run during the cam-
paign.

A template file [RD13] is available in the ROC DMS.

2.4.4.2 Validation campaign test card

The test card file is the baseline document used to execute a given test case.

Each test card shall contain the following items:

• test_case-id: The Test case unique identifier (see Test case naming for details)

• requirements: The list of CIRD requirements that have been tested

• version: Version of the test card file

• priority: the priority of the test case related to the CIRD requirements (‘low’, ‘medium’, ‘high’ or
‘critical’)

• created_by: Author(s) of the test card file

• reviewed_by: test card file reviewer(s)

• test_case_description: Short description of the test case objectives

• test_scenario: Summary of the test case procedure

• tester_s_name: Name of the tester(s)

• date_tested: Execution date of the test case

• test_case_status: Execution status of the test case (‘Not executed’, ‘Passed’, ‘Partially passed’,
‘Failed’, ‘Suspended’)

• test_readiness_status: Readiness status of the test case (‘Not ready’, ‘Ready’, ‘Partially ready’)

• comment: Any relevant information about the test_case_status and/or test_readiness_status

• known_limitations: List of known limitations

• prerequisites: List of prerequisites prior to the test case execution

• test_data: List of test data required to run the test case

• test_steps: shall contains the list of step_details, specification_id (RSSS and URD requirements
ID), expected_results, actual_results and status.

The test card shall be provided as a YMAL format file with the following naming convention:

<test-case-id>_<test-card-version>.yml

Where:

2.4. OVERALL APPROACH 10

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 11

• <test-case-id> is the test case identifier, as defined in the section Test case naming;

• <test-card-version> is the version of the test card;

All test card files shall be saved as templates into a dedicated ROC Git repository. Each time a new
validation campaign is planned, new empty copies of the test card files shall be generated and provided
to the testers.

In this case, the test card copies shall be renamed as:

<test-case-id>_<test-card-version>_<rssvc-name>.xml

Where:

• <rssvc-name> is the name of the RSSVC

The testers shall use these copies during the tests. Filled test card copies shall be archived in the ROC
DMS at the end of the campaign.

2.4.4.3 Validation campaign test report

A validation campaign test report shall be written after each validation campaign.

It shall provide:

• The list of completed test card files and automated reports (see section Test Reporting) generated
during the validation tests.

2.4.5 ROC validation activity planning overview

The timeline below presents the main validation activities involving the ROC. The ROC development
planning is given in the ROC Software Development Plan (SDP) [AD2].

The ROC shall organize a validation campaign before each RSS main version release; starting with the
RSS3 release.

Additionally, ESA runs its own tests and validation campaigns. The overall responsibities in these cam-
paigns is specified in sections: Responsabilities <responsabilities> and Validation at ESA level <vali-
dation_esa>.

The following table summarizes the RSS software units that will be validated during each campaign.
The list of expected requirements for each RSS release can be found in [RD?].

11 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 12

Fig. 2.1: Validation activity planning overview

Tab. 2.1: Validation campaigns planning
Validation campaign Components to validate
RSS3 (rehearsal)

• MUSIC-FIGARO prototype version
• MUSIC-FAUST prototype version
• RODP preliminary version

RSS4
• MUSIC main page prototype version
• MUSIC-FIGARO operational version
• MUSIC-FAUST operational version
• MUSIC-TV prototype version
• RODP operational version at LESIA
• ROC-SGSE “mission” instance at LESIA

RSS5
• MUSIC (all components)
• RODP prime instance at LESIA
• MUSIC-OPERA operational version (TBC)
• MUSIC-SISSI prototype version (TBC)
• MUSIC TV operational version
• LLVM (LESIA backup instances)

2.4.5.1 Schedule for the ROC Software System validation campaigns (RSSVC)

The schedule of each RSSVC shall be detailed in the dedicated test plan.

2.4. OVERALL APPROACH 12

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 13

2.4.5.2 Schedule for the ESA tests

2.4.5.2.1 Schedule related to the ROC-SOC interfaces tests

The schedule related to the SOC interfaces tests is detailed in [AD5]. A summary of main tests are
provided here:

• SOC TMC and E-FECS compatibility test

• SOC IOR compatibility test

• SOC GFTS interface test

Detailed planning for each test will be provided by the SOC in the dedicated test plan.

2.4.5.2.2 Schedule related to the SOC RPW LLVM instance tests

The main milestones related to the RPW LLVM validation process with the SOC are reported in [AD1].

The ROC must thus ensure that, at each step of the SOC validation process. The LLVM testing envi-
ronments at LESIA is used to verified and deliver an instance with the expected functionalities. This
environment will have to be maintained during the mission, in the case where a new LLVM version
needs to be delivered.

2.4.5.2.3 Schedule related to the ROC-MOC interfaces tests

The schedule related to the MOC interfaces tests is detailed in [AD?]. It concerns the following tests:

• MOC PDOR/MDOR compatibility test

• MOC DDS/GFTS interface test

Detailed planning for each test will be provided by the MOC in the dedicated test plan.

2.4.6 Resources

The validation testing environment shall rely on the development/production environments defined in
the Software Development Plan [AD2]. Moreover, it shall be consistent with the technology and related
design presented in the ROC Software System Design Document [RD3].

The following sections give the main hardware and software resources, which shall be used for each RSS
validation campaign. Specific resources for a given validation campaign will have to be presented in the
dedicated test plan.

13 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 14

2.4.6.1 Hardware resources

The ROC validation campaigns should be performed in an environment similar to the operational - also
called “production”- environment [AD2]. Therefore, the following hardware resources shall be required:

• a Debian server identical to the production one, see [AD2] for architecture and configuration de-
tails;

• a network connexion, for software installation and database communications;

• a workstation (client computer) with the minimal configuration described in [RD1];

• a database server with PostgreSQL.

In addition, some mutualized resources are used during the validation process:

• the ROC Gitlab server or another git repository to download the software sources

2.4.6.2 Software resources

The ROC shall rely on the following main software to run the validation:

• Python (3.6)

• Node.js (8.11)

• npm (6.4)

The validation tests shall be tracked using the ROC Validation group, available in the Gitlab server
managed by the Direction Informatique de l’Observatoire (DIO).

Each test campaign shall be run in a dedicated isolated workspace, using a Python virtual environment.

Input data required to perform the tests are defined in section :2.5.3 <Datasets>.

Part of the validation tests are to be done manually. Personnel requirements are described in section 2.2.7
<Personnel requirements>.

Finally, the MUsIC web page requires a recent web browser, either Firefox (56.0+) or Chrome (61.0+).
Both will be required for a complete test of the application performances.

2.4.7 Responsibilities

2.4.7.1 Key personnel

The key personnel of a RSSVC are:

• The RPW ground segment software validation engineer;

• The RPW ground segment project manager;

• The RPW ground segment Assurance Product Manager;

2.4. OVERALL APPROACH 14

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 15

• the ROC developers (the complete list of developers is available in the ROC Project Management
Plan [AD1]);

• the ROC operators.

Additional actors shall participate to the validation activities, as listed in the section 2.2.7 <Personnel
requirements>.

The detailed responsibilities shall be reported for each RSSVC in the dedicated test plan. The following
sections present how the validation activities are shared between the identified actors.

2.4.7.2 Test writing

The RPW ground segment software validation engineer supervises the test implementation. In partic-
ular, he/she ensures that the tests cover all the specifications addressed in the ROC Software System
Specification [RD1] and are compliant with the test guidelines.

2.4.7.2.1 Automatic tests

Tests writing is part of the development cycle [AD2]. Therefore the responsibility of a proper implemen-
tation of tests belongs to each developer of the ROC.

2.4.7.2.2 Beta testing procedures

At this stage of the project, only the MUSIC application validation requires a beta testing phase. The
responsibility for developing this test procedure is shared between ROC operators and developers.

2.4.7.2.3 Verification procedures

For software tests run using the continuous integration infrastructure. The dedicated Gitlab CI interface
shall be used to check the status of the tests.

Any other specific verification procedure shall be clearly defined in the test plan.

2.4.7.3 Test platform

The RPW ground segment software validation engineer is also responsible for setting up and maintain-
ing the test platform, including the continuous integration server (see section 2.5 for details about the
validation environment).

15 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 16

2.4.7.4 Execution and verification of tests

The RPW ground segment project manager shall ensure that the validation of the RSS meet all the
specifications addressed in the CIRD [AD6].

2.4.7.5 LLVM

The ROC is in charge of:

• Validating the “backup” instance of the LLVM deployed at the ROC site;

• preparing the tests that will be run at ESA;

• ensuring the ESA LLVM instance is compliant with the expected specifications [RD? TBD]

The formal validation is the responsibility of ESA.

2.4.7.6 Instrument commanding

The ROC is in charge of:

• checking file format compliance of TC sequences;

• checking file format compliance of IOR/MDOR/PDOR;

• ensuring the TC sequences submitted to ESA are compliant with the specifications at system,
command/control and interface levels [RD? TBD, DR? TBD]. A main step before delivery will be
to test the TC sequences with the RPW-PI laboratory GSE.

The formal validation of TC sequences/IOR/MDOR/PDOR is the responsibility of ESA.

2.4.8 Personnel requirements

The personnel required for testing differs significantly from one RSS component to another. In particular,
at this stage of the project, only MUsIC requires a beta testing phase. The table below details the needs
by component/task/product:

2.4. OVERALL APPROACH 16

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 17

Tab. 2.2: Personnel requirements
Component/Task/Product Needs (see the ROC Project Management

Plan [AD1] for a complete list of the develop-
ers)

Automatic tests launch and monitoring
• An engineer to run the tests
• An engineer to monitor and report results

Verification and compilation of reports Two engineers
Scientific validation of data products TBD
TC sequences testing using the GSE

• An operator to run the GSE
• An ROC engineer to analyze and report re-

sults
• An GSE administrator (in backup) in case of

GSE issues
• An ROC administrator (in backup) in case

of ROC tools (FIGARO, FAUST and ROC-
SGSE) issues

MUSIC beta testing
• a member of the ROC developpement team

(to follow beta-testing as a developer point
of view and to report bugs)

• a ROC administrator to ensure that MUSIC
is up-and-running during the beta-tests

• a scientist for science data visualization func-
tional beta-tests

• a ROC operator for RPW commanding func-
tional beta-tests

• a member of the RPW Operations Board
(ROB) for operation planning and SBM se-
lection functional beta-tests

• a member of the RPW CNES team for RPW
commissioning functional beta-tests

• a member of the GIGL for security aspects

2.4.9 Risks

2.4.9.1 Risks identification

The following points of failure during validation campaigns have been identified:

17 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 18

Tab. 2.3: Risk matrix
Point of failure Consequences Impact Probability
Network connection issues Installation and servers com-

munication issues
Major Unlikely

Server down Unable to run the RSS/Gitlab
(depending on the server)

Major Unlikely

Power failure All the servers are off Major Very unlikely
Staff absence The validation tasks will be

done by another operator
Minor Possible

Computer breakdown The validation campaign will
be done using another com-
puter

Minor Unlikely

Database corruption/error Integration and acceptance
tests can not be performed

Major Very unlikely

2.4.9.2 Contingency plans

2.4.9.2.1 Network issues

If it is a short outage of the network (less than 2 days), the validation campaign will just be delayed. In
case of prolonged network issues, the campaign will be postponed.

2.4.9.2.2 Power issues

If a brief power cut occurs (less than 2 days), the validation campaign will just be delayed. In case of
prolonged power issues, the campaign will be postponed.

2.4.9.2.3 Server breakdown recovery

The RSS is designed to be installed in less than 30 min on any computer meeting the specification
[RD1]. Moreover, the ROC has three Debian instances (roc, roc-dev and roc-web) that can be
used temporarily as backup servers.

2.4.9.2.4 Computer breakdown recovery

The ROC has at least three computers which meets the specifications and can be used for the validation
campaign.

2.4. OVERALL APPROACH 18

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 19

2.4.9.2.5 Gitlab backup

2.4.9.2.5.1 Software sources and issues management

To ensure a perfect redundancy of the versioning system and an issue manager, the ROC shall:

• periodically dump the ongoing issues;

• maintain a up to date copy of all the git repository on another server.

These issues dumps and repositories shall be stored on roc-dev.

2.4.9.2.5.2 Unit, acceptance and regression tests

Gitlab is just automation tool. Each RSS instance comes with integrated tests which can be run indepen-
dently.

2.5 Validation tasks identification

2.5.1 Test Reporting

The tests reports format depend on the test runner:

• Pytest and Mocha publish JUnit XML test reports which are collected and made available to users.
These reports also include the results of coding guidelines tests as well as comment and test cov-
erage metrics.

• Locust results are saved in a CSV file. This file includes statistics on response times and errors.

• Beta test reports shall be based on the Beta Testing Report Template (Appendix C). This document
includes a series of test cases with evaluation grids and feedback sections.

Each validation campaign will be monitored using JIRA. Confluence (associated with JIRA) will be used
to be compile all the results of the campaign in a single document, the ROC Software System Validation
Test Report.

2.5.2 Test versioning

To keep track of the validation campaign, a dump of the pre-production database (see section 5.3), tests
inputs and results shall be stored on the data storage server, lesia11 (accessible via NFS from roc
and roc-dev).

ROC databases are on a server maintained by the GIGL

19 CHAPTER 2. VALIDATION PLAN

http://junitpdfreport.sourceforge.net/managedcontent/PdfTranslation

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 20

2.5.3 Controls

The ROC sets up the following controls:

• Static checks to verify the compliance with applicable quality standards and allow the production
of reports;

• Dynamic controls using unit tests, integration and validation test cases;

• Manual controls to validate the functionalities that can not be checked automatically, typically the
HMIs.

2.5.4 Requirements monitoring

The Topcased tool (https://www.polarsys.org/topcased) shall be used to generate the ROC requirements
traceability matrices between the CIRD, URD, RSSS and test case ID.

2.6 Validation strategy

2.6.1 Unit testing strategy

The strategy for unit testing is specific to each RSS component. The MUSIC [RD TBD] and Pipelines
[RD TBD] test plans describe respectively the test approach for MUSIC and for the RODP/ROC-
SGSE/LLVM.

2.6.2 Continuous integration et non-regression strategies

The RSS continuous integration system rely on Gitlab CI application. Fig. 2.2 represents the typical
workflow of the system.

N.B. Jenkins solution tool have been replaced by Gitlab CI to ensure the ROC software automated testing.

During the development of a new feature, the developer shall send his code to the Gitlab repository. This
action triggers the validation process on the Gitlab server. At first, the system runs successively unit and
acceptance tests.

• If one of these steps failed (Fig. 2.2, cases 1 and 2), a negative feedback is sent to the developer.

• If the tests are completed, a positive feedback is sent and the developer shall switch to manual
validation.

Once all these steps are marked as successful, the feature can be released (Fig. 2.2, case 3).

2.6. VALIDATION STRATEGY 20

https://www.polarsys.org/topcased

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 21

Fig. 2.2: Continuous integration flow

21 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 22

2.7 Validation environment

2.7.1 Continuous integration

The automated test environment is a part of the continuous integration system. Continuous integration
cycles and non regression tests are described in the section 2.4.3. The Fig. 2.3 summarise the continuous
integration system organisation.

N.B. Jenkins solution tool have been replaced by Gitlab CI to ensure the ROC software automated testing.

Fig. 2.3: Continuous integration environment

Gitlab runners are run on the roc-dev server using dedicated tokens. The testing jobs are triggered
automatically by push requests but can be run manually using the Gitlab web interfaces.

Tests reports are accessible via the TBD web interface or directly by ssh. On roc-dev, the reports are
stored in the TBD project workspace.

2.7.2 Validation platform

The validation is performed on the pre-production environment.

As shown in Fig. 2.4, the overall organisation of the pre-production environment relies on the continuous
integration infrastructure. The only difference is that the RSS units run on their respective production
servers.

2.7. VALIDATION ENVIRONMENT 22

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 23

Note that the test runners on the production servers use a dedicated user account to avoid interfering with
the production instances.

Fig. 2.4: Pre-production environment

2.7.3 Test data

The data used to perform the validation shall be listed in the test plan.

2.8 Interfaces validation

2.8.1 MOC interfaces validation

The organization related to the MOC data exchange interfaces test and validation is not fully known at
this stage of the project.

Nevertheless, it is assumed that the following interfaces will be tested:

• MOC Generic File Transfer System (GFTS)

23 CHAPTER 2. VALIDATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 24

• MOC Data Dissemination System (DDS)

Especially, the DDS interface will have to be tested in conditions close to the system environment at
MOC site during the commissioning.

It will also include compatibility tests of the formats of the data files sent to the MOC via the GFTS,
namely: the Payload Direct Operations Request (PDOR) and the Memory Direct Operations Requests
(MDOR) (see [RD5]).

The formal validation and resulting reports will be done by the MOC from the tests performed with the
ROC.

2.8.2 SOC interfaces validation

The organisation and specification related to the SOC interfaces tests and validation are detailed in [RD?
TBD].

The following SOC interfaces will be tested:

• SOC GFTS

It will also include compatibility tests of the formats of the data files exchanged via the GFTS between the
ROC and SOC, namely: the Instrument Operation Requests (IOR) [RD6], the Telemetry Corridor (TMC)
[RD8], the Extended Flight Event and Communication Skeletons (E-FECS) [RD6] and the ancillary data
[RD9].

The formal validation and resulting reports will be done by the SOC from the tests performed with the
ROC.

2.8. INTERFACES VALIDATION 24

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 25

3 Verification plan

3.1 Concept and definition

The verification process can be defined as the evaluation of whether or not a product, service, or system
complies with a regulation, requirement, specification, or imposed condition.

3.2 Control procedures

Automatic reports are exported from Gitlab. Both automated and manual test cases are then compiled in
Jira and Confluence to generate the final report.

TBC (problem reporting and resolution, deviation and waiver policy, control procedures)

3.3 Identification of verification activities

The validation is based on test campaigns linked to the RSS release planning. Each validation test case
follows from a specific requirement of the CIRD [AD6].

3.3.1 Test case naming

Validation test cases follow the naming convention described below:

ROC-<function>-<identifier>-<target>

Where:

• <function> is a string identifying the tested ROC function (see table below);

• <identifier> is a 3-digits integer (e.g., ‘010’), which shall be unique for a given <function>.

• <target> is a string given the function target

The exhaustive list of labels is given below:

25 CHAPTER 3. VERIFICATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 26

Tab. 3.1: Nomenclature
Task Label
Data retrieval DATA_RETR
Data production DATA_PROD
Data distribution DATA_DIST
Data storage and archiving DATA_ARCH
Data visualization DATA_VISU
Instrument commanding RPW_COM
Instrument monitoring RPW_MONIT
Ground support GRD_SUPPORT
ROC infrastructure monitoring ROC_MONIT

3.3.2 Test case description

Each test case must contain the following information:

• Test Purpose: This paragraph describe the purpose of this test.

• Prerequisites: This paragraph lists all the actions that must be done before the execution of the
test case.

• Input data: This paragraph lists all the data needed to run the test: products, auxiliary data.

• Expected outputs: This paragraph lists all the expected outputs of the test.

• Reference Data: This paragraph lists all the data useful for verifying outputs.

• Standalone: This paragraph indicates whether the test case is independent of other test cases.

3.3.3 Verification procedures

This section presents the list of test cases by functionality. For each test case, the list of

3.3.3.1 Data retrieval

Tab. 3.2: Data retrieval
Test case Tested function
ROC-DATA_RETR-010-RPW Retrieving RPW data
ROC-DATA_RETR-020-OPS Retrieving Mission operation input data
ROC-DATA_RETR-030-ANC Retrieving Mission ancillary data

3.3. IDENTIFICATION OF VERIFICATION ACTIVITIES 26

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 27

3.3.3.2 Data production

3.3.3.2.1 Producing RPW data files

The automated verification of RPW data files is detailed in the DVVP [RD15].

The verification of the RCS is detailed in the pipelines test plan [TBD].

Tab. 3.3: RPW data files
Test case Tested function
ROC-DATA_PROD-010-LZ Producing RPW LZ data
ROC-DATA_PROD-020-L0 Producing RPW L0 data
ROC-DATA_PROD-030-L1 Producing RPW L1 data
ROC-DATA_PROD-040-L2 Producing RPW L2 data for Bias
ROC-DATA_PROD-041-L2 Producing RPW L2 data for LFR
ROC-DATA_PROD-042-L2 Producing RPW L2 data for SCM
ROC-DATA_PROD-043-L2 Producing RPW L2 data for TDS
ROC-DATA_PROD-044-L2 Producing RPW L2 data for THR
ROC-DATA_PROD-050-L3 Producing RPW L3 data
ROC-DATA_PROD-060-HK Producing RPW HK “digest” data
ROC-DATA_PROD-070-QL Producing RPW data summary plots (i.e; quick-

looks)

3.3.3.2.2 Processing mission ancillary data files

As described in the CIRD [AD6], the ROC does not plan to produce any ancillary data files. Therefore
no testing is planned for these files.

3.3.3.2.3 Producing RPW Low Latency data

Tab. 3.4: Low Latency data
Test case Tested function
ROC-DATA_PROD-080-LL01 Deliverying RPW Low Latency LL01 data process-

ing pipeline

3.3.3.2.4 Validating RPW science data

The validation of the RPW science data is outside of the scope of this document and presented in the
DVVP [RD15].

27 CHAPTER 3. VERIFICATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 28

3.3.3.2.5 Re-processing RPW data

Tab. 3.5: Re-processing
Test case Tested function
ROC-DATA_PROD-090-REPROC Re-processing RPW data

3.3.3.2.6 Converting on-board time

Tab. 3.6: On-board time
Test case Tested function
ROC-DATA_PROD-100-OBT_UTC Converting on-board time (OBT) to UTC time

3.3.3.3 Data dissemination

3.3.3.3.1 Distributing preliminary RPW data

Tab. 3.7: Preliminary data
Test case Tested function
ROC-DATA_DIST-010-PRE_DATA Distributing preliminary RPW data (part 1 - pub-

lishing data)
ROC-DATA_DIST-015-PRE_DATA Distributing preliminary RPW data (part 2 - down-

loading data)

3.3.3.3.2 Distributing definitive data

As described in the CIRD [AD6], the ROC is not expected to be a public data provider for RPW. There-
fore no testing is planned for the distribution of definitive data.

3.3.3.3.3 Distributing ancillary data

Tab. 3.8: Ancillary data
Test case Tested function
ROC-DATA_DIST-020-ANC Distributing mission ancillary data

3.3. IDENTIFICATION OF VERIFICATION ACTIVITIES 28

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 29

3.3.3.4 Data storage and archiving

3.3.3.4.1 Storing data at LESIA

Tab. 3.9: Storing at LESIA
Test case Tested function
ROC-DATA_ARCH-010-LESIA Storing data at LESIA

3.3.3.4.2 Archiving RPW data

Tab. 3.10: Archiving RPW data
Test case Tested function
ROC-DATA_ARCH-020-ESAC Archiving RPW data at ESAC
ROC-DATA_ARCH-030-CDPP Archiving RPW data at CDPP

3.3.3.5 Data visualization

Tab. 3.11: Visualizing data
Test case Tested function
ROC-DATA_VISU-010-VISU Visualizing data

3.3.3.6 Instrument commanding

3.3.3.6.1 Requesting Medium-Term Planning (MTP) instrument operations

Tab. 3.12: MTP instrument operations
Test case Tested function
ROC-RPW_COM-010-MTP_PROD Producing RPW MTP IOR
ROC-RPW_COM-020-MTP_DELIV Submitting RPW MTP IOR to SOC
ROC-RPW_COM-030-MTP_CONST RPW MTP IOR constraints
ROC-RPW_COM-040-RESOU Compute RPW resources

29 CHAPTER 3. VERIFICATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 30

3.3.3.6.2 Requesting Short-Term Planning (STP) instrument operations

Tab. 3.13: STP instrument operations
Test case Tested function
ROC-RPW_COM-050-STP_PROD Producing RPW STP IOR
ROC-RPW_COM-060-STP_DELIV Submitting RPW STP IOR to SOC
ROC-RPW_COM-070-SBM_EVENT Requesting SBM1/SBM2 events data

3.3.3.6.3 Requesting non-routine instrument operations

Tab. 3.14: Non-routine instrument operations
Test case Tested function
ROC-RPW_COM-080-PDOR-PROD Producing RPW PDOR
ROC-RPW_COM-081-PDOR-DELIV Submitting RPW PDOR to MOC
ROC-RPW_COM-090-MDOR-PROD Producing RPW MDOR
ROC-RPW_COM-091-MDOR-DELIV Submitting RPW MDOR to MOC

3.3.3.6.4 Producing, deliverying and using instrument command sequences

Tab. 3.15: Instrument command sequences
Test case Tested function
ROC-RPW_COM-100-SEQ_PROD Producing RPW TC sequences
ROC-RPW_COM-101-SEQ_DELIV Submitting RPW TC sequences to MOC
ROC-RPW_COM-110-SEQ_TEST Testing TC sequences execution
ROC-RPW_COM-120-SEQ_SOUR RPW TC sequences source and version

Note: the TC sequences execution will be tested using the MEB GSE at LESIA, the formal validation of
the RPW TC sequences execution will be done by ESA with the support of the ROC team.

3.3.3.7 Instrument monitoring

3.3.3.7.1 Monitoring instrument data

Tab. 3.16: Instrument data
Test case Tested function
ROC-RPW_MONIT-010-RPW_DATA Monitoring RPW instrument data

3.3. IDENTIFICATION OF VERIFICATION ACTIVITIES 30

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 31

3.3.3.7.2 Checking instrument command execution

Tab. 3.17: Command execution
Test case Tested function
ROC-RPW_MONIT-020-TM_S1 Monitoring TM Service 1
ROC-RPW_MONIT-030-ISM Checking expected instrument state
ROC-RPW_MONIT-040-SW_PATCH Checking flight software update

3.3.3.8 Ground support

Tab. 3.18: Ground support
Test case Tested function
ROC-GRD_SUP-010-DATA_VISU Supporting RPW calibration campaigns on-

ground: data visualization
ROC-GRD_SUP-020-DATA_DIST Supporting RPW calibration campaigns on-

ground: data distribution
ROC-GRD_SUP-030-RPW_ANOMALY Supporting RPW anomaly investigation
ROC-GRD_SUP-040-SBM_SIMU Supporting RPW DPU SBM1/SMB2 detection al-

gorithms simulation

3.3.3.9 ROC infrastructure monitoring

Tab. 3.19: Infrastructure monitoring
Test case Tested function
ROC-ROC_MONIT-010-RSS ROC infrastructure monitoring

3.3.3.10 Communication and science support

No formal test is planned for this activity.

3.3.3.11 Non regression tests

All automatic tests are considered as non-regression tests. They will be run whenever a push on the
versioning server occurs.

31 CHAPTER 3. VERIFICATION PLAN

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 32

3.3.4 Quality control

The control and quality assurance is descrideb in the dedicated document [SPAP] (TBC). Quality reports
must be provided with each test report.

3.3. IDENTIFICATION OF VERIFICATION ACTIVITIES 32

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 33

4 List of TBC/TBD/TBWS

(TBW)

33 CHAPTER 4. LIST OF TBC/TBD/TBWS

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 34

5 Distribution list

(TBW)

34

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 35

6 Appendix A - Testing guidelines

6.1 Documentation of tests

Test descriptions must have a subject and can have a body (optional) to detail the test purpose. If a test
is linked to one or more specifications, the subject shall be followed by a label with the name of the
specification.

Moreover the description shall respect the following rules:

• the separation between the subject, the label and the body is done with a single white line;

• the subject is limited to 50 characters;

• the subject starts with a capital letter;

• the subject line does not end with a period;

• the subject is written with the imperative mood;

• the body is wrapped at 79 characters.

6.2 Python Testing guidelines

Most of the Python tests shall be organized around Test Cases regrouping several test functions with a
common setup/teardown. However, some test with no particular setup can be done using simple func-
tions.

Each test function contains one or more expectations that test the state of the code. An expectation is
an assertion that is either true or false. A test function with all true expectations is a passing test. A test
function with one or more false expectations is a failing test.

Python test case classes shall be named as follow: [FeatureBeingTested]Tests.

Example:

class TvApiTests(APITestCase):
"""
Test the RPW TM/TC Viewer (TV) API

(continues on next page)

35 CHAPTER 6. APPENDIX A - TESTING GUIDELINES

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 36

(continued from previous page)

:spec: [TV] My specification label

An optional description goes here.

"""
pass

Python test case methods and functions shall be named as follow:
test_[feature_being_tested]___[state_under_test].

Example:

def test_get_packet_list___no_filter(self, packet_list):
"""
Test packet listing without filters

An optional description goes here.

"""
pass

6.3 Javascript Testing guidelines

Javascript test are organised around Mocha test suites

A test suite begins with a call to the global Mocha function describe with two parameters: a string and
a function. The string is a name or title for a the test suite - the test suite shall be named as follow:
[FeatureBeingTested]Tests . The function is a block of code that implements the suite as a
succession of spec.

Specs are defined by calling the global Mocha function it, which, like describe takes a string and a
function. The string is the title of the spec and the function is the spec, or test. A spec contains one
or more expectations that test the state of the code. An expectation in Mocha is an assertion that is
either true or false. A spec with all true expectations is a passing spec. A spec with one or more false
expectations is a failing spec.

Example:

/**
* @test {PacketTable}

* @spec [TV] Table spec

*/
describe('PacketTableTests', function () {
it('should have a table to list packets', function () {

(continues on next page)

6.3. JAVASCRIPT TESTING GUIDELINES 36

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 37

(continued from previous page)

const wrapper = shallow(<PacketTable packets={[{id: 1,
packet_name: 'TM_DPU',
packet_datetime: '2017-

→˓01-01',
apid: 12,
packet_type: 'Type',
category: 'Cat'}]}/>)

// check expected fields using assertions
expect(wrapper.find('Table')).to.have.length(1)

})

it('should have a progress indicator during packets fetching', function
→˓() {

const wrapper = shallow(<PacketTable is_fetching={true}/>)
expect(wrapper.find('CircularProgress')).to.have.length(1)

})
})

37 CHAPTER 6. APPENDIX A - TESTING GUIDELINES

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 38

7 Appendix B - External tools, softwares and
packages

Tab. 7.1: External tools, softwares and packages
Name Description Reference
tox A generic virtualenv management

and test command line tool
https://pypi.python.org/pypi/tox

Pytest A framework that makes it easy to
write small unit tests as well as
complex functional testing

https://pypi.python.org/pypi/pytest/
3.2.3

hypothesis A library to parametrize tests
and simply generate random data
matching given specifications

https://pypi.python.org/pypi/
hypothesis/3.32.0

Mocha A flexible test runner that can be
used to run JavaScript tests on the
server or in the browser

https://github.com/mochajs/mocha

Chai An assertion library, similar to
Node’s build in assert that can be
used in browser.

https://github.com/chaijs/chai

Enzyme A JavaScript Testing utility for Re-
act that makes it easier to as-
sert, manipulate, and traverse React
Components

https://github.com/airbnb/enzyme

Jenkins An extensible automation server
used for continuous integration

https://jenkins.io/

Gitlab A web platform used to monitorate
versioning, issues and continuous
integration

https://about.gitlab.com/

locust A python utility to do distributed
load testing used to perform stress
tests on the MUSIC Web tools

https://pypi.python.org/pypi/locust/
0.8

38

https://pypi.python.org/pypi/tox
https://pypi.python.org/pypi/pytest/3.2.3
https://pypi.python.org/pypi/pytest/3.2.3
https://pypi.python.org/pypi/hypothesis/3.32.0
https://pypi.python.org/pypi/hypothesis/3.32.0
https://github.com/mochajs/mocha
https://github.com/chaijs/chai
https://github.com/airbnb/enzyme
https://jenkins.io/
https://about.gitlab.com/
https://pypi.python.org/pypi/locust/0.8
https://pypi.python.org/pypi/locust/0.8

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 39

8 Appendix C - Beta Testing Report Template

8.1 Functional Evaluation

Tab. 8.1: Functional Evaluation
Test Case ID Function Test result Comments, Ideas and Issues

[TBC]

8.2 Specific Bugs and Problems Noted

Tab. 8.2: Specific Bugs
Test Case ID Nature of Problem Full List of Steps to Reproduce

the Problem

[TBC]

8.3 Other Generic Topics

Please comment on the following (if relevant):

• speed of user interface interactivity and of calculations

• order of screens and steps, and number of steps to complete an action

• organization of menu items

• quality of written explanations

• terms or abbreviations used

39 CHAPTER 8. APPENDIX C - BETA TESTING REPORT TEMPLATE

ROC Verification and
Validation Plan

Ref: ROC-GEN-SYS-PLN-00040-LES

Issue Revision
02 02

Date: December 20, 2019 Page: 40

• annoying or frustrating experiences

8.3. OTHER GENERIC TOPICS 40

	General
	Scope of the document
	Applicable Documents
	Reference Documents
	About this document
	Access policy
	Terminology

	Validation plan
	Context and philosophy
	Definitions
	Unit tests
	Integration tests
	Validation tests

	Convention
	Validation campaign naming

	Overall approach
	Overview
	Perimeter
	At the ESA level
	At the RPW level
	At the ROC level

	Implementation
	Involved software
	Tools, Techniques and Methods
	Procedures

	Expected Documentation
	Validation campaign Test plan
	Validation campaign test card
	Validation campaign test report

	ROC validation activity planning overview
	Schedule for the ROC Software System validation campaigns (RSSVC)
	Schedule for the ESA tests
	Schedule related to the ROC-SOC interfaces tests
	Schedule related to the SOC RPW LLVM instance tests
	Schedule related to the ROC-MOC interfaces tests

	Resources
	Hardware resources
	Software resources

	Responsibilities
	Key personnel
	Test writing
	Automatic tests
	Beta testing procedures
	Verification procedures

	Test platform
	Execution and verification of tests
	LLVM
	Instrument commanding

	Personnel requirements
	Risks
	Risks identification
	Contingency plans
	Network issues
	Power issues
	Server breakdown recovery
	Computer breakdown recovery
	Gitlab backup
	Software sources and issues management
	Unit, acceptance and regression tests

	Validation tasks identification
	Test Reporting
	Test versioning
	Controls
	Requirements monitoring

	Validation strategy
	Unit testing strategy
	Continuous integration et non-regression strategies

	Validation environment
	Continuous integration
	Validation platform
	Test data

	Interfaces validation
	MOC interfaces validation
	SOC interfaces validation

	Verification plan
	Concept and definition
	Control procedures
	Identification of verification activities
	Test case naming
	Test case description
	Verification procedures
	Data retrieval
	Data production
	Producing RPW data files
	Processing mission ancillary data files
	Producing RPW Low Latency data
	Validating RPW science data
	Re-processing RPW data
	Converting on-board time

	Data dissemination
	Distributing preliminary RPW data
	Distributing definitive data
	Distributing ancillary data

	Data storage and archiving
	Storing data at LESIA
	Archiving RPW data

	Data visualization
	Instrument commanding
	Requesting Medium-Term Planning (MTP) instrument operations
	Requesting Short-Term Planning (STP) instrument operations
	Requesting non-routine instrument operations
	Producing, deliverying and using instrument command sequences

	Instrument monitoring
	Monitoring instrument data
	Checking instrument command execution

	Ground support
	ROC infrastructure monitoring
	Communication and science support
	Non regression tests

	Quality control

	List of TBC/TBD/TBWS
	Distribution list
	Appendix A - Testing guidelines
	Documentation of tests
	Python Testing guidelines
	Javascript Testing guidelines

	Appendix B - External tools, softwares and packages
	Appendix C - Beta Testing Report Template
	Functional Evaluation
	Specific Bugs and Problems Noted
	Other Generic Topics

		2019-12-20T14:08:20+0100
	stephane.papais@nexeya.com

		2019-12-20T16:07:57+0100
	Xavier Bonnin

