
	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	1	/	30	-	

CNRS-Observatoire de PARIS
Section de MEUDON – LESIA
5, place Jules Janssen
92195 Meudon Cedex – France

RPW Operation Centre

RPW Calibration Software Interface

Control Document

ROC-PRO-PIP-ICD-00037-LES
Iss.01, Rev.01

Prepared	by:		 Function:		 Signature:		 Date	

Manuel	Duarte	
Xavier	Bonnin		

RPW	Ground	Segment	
software	engineer		

RPW	Ground	Segment	
Deputy	Project	Manager	

	 19/03/2017	

Verified	by:		 Function:	 Signature:		 Date	

Xavier	Bonnin	 RPW	Ground	Segment	
Deputy	Project	Manager	 	 Dd/mm/yyyy	

Approved	by:		 Function:	 Signature:		 Date	

Yvonne	de	Conchy	 RPW	Ground	Segment	
Project	Manager	 	 Dd/mm/yyyy	

For	application:		 Function:	 Signature:		 Date	

Name	 Team	Member	#4	 	 Dd/mm/yyyy	

CLASSIFICATION	 PUBLIC	 RESTRICTED	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	2	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

Change Record

Issue	 Rev.	 Date	 Authors	 Modifications	

0	 0	 08/07/2
015	

Manuel	Duarte	 First	draft	(inherits	from	the	RCS	ICD	for	ROC-
SGSE,	ROC-TST-GSE-ICD-00023)	

1	 0	 09/11/2
016	

Xavier	Bonnin	 First	release		

1	 1	 19/03/2
017	

Xavier	Bonnin	 - RCS	CDF	outputs	path	is	now	passed	via	the	
CLI	specific	input	parameters,	and	not	
returned	by	the	software	in	the	stdout.	

- “outputs.release”	attribute	removed	from	
the	descriptor	file	

- Add	“outputs.template”	attribute	in	the	
descriptor	file	

- Rename	“Exceptions	and	errors”	section	to	
“Exceptions	handling”	and	update	the	
content	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	
	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

	 	 	 	 	

Acronym List

Acronym	 Definition	

BP	 Basic	Parameters	

CDF	 Common	Data	Format	

CLI	 Command	Line	Interface	

CSV	 Comma	Separated	Values	
ICD	 Interface	Control	Document	

ID	 Identifier	

I/F	 Interface	

I/O	 Input/Output	

JSON	 JavaScript	Object	Notation	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	3	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

ROC	 RPW	Operation	Centre	

RPW	 Radio	and	Plasma	Waves	instrument	

SCM	 Search	Coil	Magnetometer	

SGSE	 Software	Ground	Support	Equipment	

SVN	 SubVersioN	

S/W	 Software	

TDS	 Time	Domain	Sampler	

LFR	 Low	Frequency	Receiver	

THR	 Thermal	Noise	and	High	Frequency	
Receivers	

WF	 Waveform	

XML	 eXtended	Markup	Language	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	4	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

Table of Contents

1	 General .. 7	

1.1	 Scope of the Document .. 7	
1.2	 Applicable Documents .. 7	
1.3	 Reference Documents ... 7	

2	 Considerations & objectives .. 8	
2.1	 RPW Calibration Software (RCS) implementation philosophy .. 8	
2.2	 RCS deliverables ... 8	
2.3	 RCS data products .. 8	
2.4	 Objectives related to this document ... 8	

3	 Description of the interface between RODP and RCS: RCS side 9	
3.1	 Description of the RCS command line interface (CLI) .. 9	

3.1.1	 CLI executable convention .. 9	
3.1.2	 CLI input parameters ... 9	
3.1.3	 RCS exception handling .. 11	

3.2	 RCS descriptor file specification .. 12	
3.2.1	 General convention ... 13	
3.2.2	 Descriptor file structure ... 13	

4	 Description of the interface between RODP and RCS: RODP side 16	
4.1	 RCS automated deployment mechanism ... 16	

4.1.1	 RCS release delivery process ... 16	
4.1.2	 RCS installation process ... 16	
4.1.3	 RCS registration process .. 16	

4.2	 RCS automated execution mechanism ... 17	
4.2.1	 Principle .. 17	
4.2.2	 RCS automated validation .. 18	
4.2.3	 Environment setup .. 18	
4.2.4	 RCS automated execution .. 18	

4.3	 RCS testing mechanism ... 20	
4.3.1	 End-to-end test .. 20	
4.3.2	 Interface compliance test .. 20	

5	 RCS outputs conventions .. 21	
5.1	 Science data convention .. 21	
5.2	 RCS log file convention .. 21	

5.2.1	 General convention ... 21	
5.2.2	 File naming convention ... 21	
5.2.3	 Format and content ... 21	
5.2.1	 Log event severity levels ... 22	

6	 Appendices .. 22	
6.1	 Example of a RPW S/W descriptor file ... 22	
6.2	 Examples of a CLI calling sequence .. 24	
6.3	 ROC S/W descriptor file validation .. 24	

7	 List of TBC/TBD/TBWs .. 29	
8	 Distribution list .. 30	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	5	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	6	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

List of figures

Figure 1. Schematic representation of the integration of S/W inside the ROC-SGSE pipeline. 17	
Figure 2. RCS I/O data inter-dependencies. ... Erreur ! Signet non défini.	
Figure 3. Detail of the execution of a RCS. .. 20	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	7	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

1 GENERAL

1.1 Scope of the Document
The RPW Calibration Software Interface Control Document (RCS ICD) describes the
interface to be implemented in the RPW Calibration Software (RCS), in order to be
autonomously run by the ROC Operations and Data Pipeline (RODP) [RD1].
The RCS definition covers all of the programs that produce RPW calibrated science data at
both analyser and sensor levels.
It is the responsibility of the teams in charge to deliver to the ROC a RCS fully compliant
with this ICD. The way the software (S/W) must be delivered to the ROC is described in the
“ROC Engineering Guidelines for External Users” (REGU) document [RD4]. The REGU
should be read in complement to the present document.

1.2 Applicable Documents
This document responds to the requirements of the documents listed in the following table:

Mark	 Reference/Iss/Rev	 Title	of	the	document	 Authors	 Date	
AD1
AD2
AD3
AD4

1.3 Reference Documents
This document is based on the documents listed in the following table:

Mark	 Reference/Iss/Rev	 Title	of	the	document	 Authors	 Date	

RD1 ROC-GEN-SYS-SDD-
00036-LES/1/0

ROC Software System Design Document X.Bonnin,
S.Lion

02/12/2016

RD2 ROC-TST-GSE-SPC-
00004-LES/1/0

ROC SGSE Software Design Document X.Bonnin 14/02/2016

RD3 ROC-TST-GSE-ICD-
00023-LES/2/3

ROC-SGSE Calibration Software
Interface Control Document

Manuel
Duarte

10/05/2016

RD4 ROC-GEN-SYS-NTT-
00019-LES/1/2

ROC Engineering Guidelines for External
Users

X.Bonnin 15/12/2016

RD5 ROC-PRO-DAT-NTT-
00006-LES/1/0

RPW Data Products X.Bonnin 15/02/2016

RD6 ROC-GEN-SYS-NTT-
00008-LES/1/2

ROC engineering guidelines X.Bonnin 15/12/2016

RD7 ECMA-404.pdf/1st edition The JSON Data interchange format ECMA 10/2013

RD8 ROC-TST-SFT-SUM-
00027-LES/1/1

ROC-
SGSE_Validation_Tool_User_Manual

M.Duarte 06/05/2016

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	8	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

2 CONSIDERATIONS & OBJECTIVES

2.1 RPW Calibration Software (RCS) implementation philosophy
During the Solar Orbiter mission, the ROC will be in charge to produce and deliver to ESA
calibrated science data for the RPW instrument. The task will be regularly performed in an
automated way by the RODP; the main RPW data processing pipeline hosted on the ROC
server at LESIA (Meudon, France). Nevertheless, it is the role of the RCS to calibrate the
instrument science data and to generate the resulting output data files. Such functionality
requires RCS to be integrated into the RODP.

Since the programming language chosen by teams in charge can differ from a RCS to another,
the integration must be done in a standard way via a dedicated common interface in order to:
(i) minimize the human intervention, (ii) ensure the traceability of S/W and its data products,
(iii) mitigate the possible points of failure in the RODP.

2.2 RCS deliverables
RCS will be supplied to the ROC by teams in charge. It is strongly recommended to reduce as
much as possible the number of S/W to be delivered by each team in order to optimize the
delivery, installation and maintenance processes.
Single S/W by team, but producing several RPW data products, should be the optimal
solution. Additionally, a given data product should be as much as possible generated by a
given class or function in the RCS.

2.3 RCS data products
The RCS data products will be RPW calibrated science data sets, at processing levels higher
than L1 and saved in Common Data Format (CDF) files [RD5]. Especially, the ROC does not
expect that the RODP handles other RCS data products than these data sets. In consequence,
RCS should not be used to generate derived science data products, such as summary plots. If
it is the case, the RCS shall include an option to trigger the production of derived products.
The full list of datasets to be produced by the RODP, as well as the data processing levels to
be applied is reported in [RD5].

2.4 Objectives related to this document
In order for the teams to be able to produce and configure their RCS to be run at the ROC, it
is necessary to define in detail the functionalities of the interface, and more particularly:

• How the RCS shall be called in a standard way
• How the RODP will identify and call the RCS
• How the RODP will identify and provide to RCS the required input data
• How and where the RCS will store the generated data products
• How the RODP pipeline will check that RCS run without error, and the resulting data

products were correctly written.
This will be the purpose of the next sections. Section 3 describes the interface to be
implemented on the RCS (i.e., teams side). Section 4 presents the mechanisms to run the RCS
on the RODP side. Section 5 gives conventions concerning the RCS output files.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	9	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

3 DESCRIPTION OF THE INTERFACE BETWEEN RODP AND RCS:
RCS SIDE

This section presents the interface that must be found in the RCS, in order to be autonomously
run by the RODP. This interface is composed of two main elements:

• A command line interface (CLI), that allows the RODP to call the RCS in a standard
way

• A descriptor file (also called “descriptor”), that provides information about the RCS to
the RODP. This information must help the pipeline to identify the RCS and build the
CLI calling sequence.

3.1 Description of the RCS command line interface (CLI)
The RCS command line interface (CLI) is detailed in this section, namely: the general
convention, the calling sequence formalism and the exception handling. A full example of
such a CLI call is given in the appendix 6.1.

3.1.1 CLI executable convention
The CLI shall comply the following convention:

• The ROC shall be able to run the RCS by calling an executable - binary or script – file
only.

• There must be a single one executable file per S/W.
• A team in charge of a RCS shall ensure that the executable file can be launched on the

ROC server environment: a Linux Debian Operating System (OS) with Bourne-Again
Shell (BASH), as a primary shell.

• The name of the executable file shall contain alphanumeric characters only. Only the
“_” underscore character must be used as a delimiter to separate two fields in the
name.

According to the convention above, every RCS CLI calling sequence shall start with:

$EXECUTABLE	

Where EXECUTABLE is here the name of the executable.

Note that the interface does not work in the case where the executable is split in several
words (for example, IDL batch commands usually work running “idl	–e	program	–
args	[...]” calling sequence). In such situation, the actual RCS launch command must
be wrapped into a BASH script. This script will be seen as the main RCS executable
from the RODP point of view, and must be thus compliant with this ICD.

3.1.2 CLI input parameters
The CLI input parameters to be used to call the RCS executable, are described in the next
section.

3.1.2.1 RCS function name
Each RCS shall contain one or more functions (or classes), which are used to create output
data files. Each function has its own set of inputs/outputs that must be known by the RODP to

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	10	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

call it correctly. This will be the purpose of the S/W descriptor file, as explained in the section
3.2.
In order to allow the RODP to launch a given function of the S/W from the CLI, the
executable shall provide the name of this function as a first argument.
It means that every calling sequence of a RCS executable shall start as followed:

$EXECUTABLE	func1	

Where EXECUTABLE is here the name of the executable, and func1 is the name of the S/W
function to be run.

Note that this syntax is not mandatory if input keywords are called, as explained in the section
3.1.2.4.

3.1.2.2 Common input parameters
In addition to the name of the function as a primary argument, the RCS executable calling
sequence shall accept the following input parameters:
--log	[/path/to/logdir]: the absolute path /path/to/logdir to the directory where
the log file(s) will be saved.
--config	 [/path/to/configfile]: if required, the absolute path
/path/to/configfile to the S/W configuration file.

The common input parameters shall take only one argument.

3.1.2.3 Specific input parameters
The specific input parameters shall provide the path to the RCS input/output RPW data files
in CDF format.
The specific input parameters shall be called in the CLI following the convention above:

• The specific input parameter calling sequence shall be formed by a “--flag value” pair,
where “flag” shall be a lowercase string, containing only alphanumeric characters and
the underscore ‘_’ as a separator, and preceded by the double hyphen prefix ‘--'. The
“value” is the parameter value to be passed to the S/W function.

• The “flag” name shall be unique for a given S/W function calling sequence.
A typical RCS call, mixing some common and specific parameters of a given func1 function,
looks like:

$EXECUTABLE	func1	--input_1	/path/to/input1	--input_2	/path/to/input2	\	
				--output_1	/path/to/output1	--log	/path/to/log	

The order of the input parameters is not important, except the function name, which must be
always the first argument to be called.
The way the RODP automatically identifies a function and its inputs/outputs from information
in the descriptor, and how it builds the corresponding calling sequence is explained in the
section 4.2.

Note that additional inputs such as the path to the master CDF or calibration table files,
shall not be passed as input parameters to the CLI, but in a configuration file to be
loaded by the S/W it-self, using the dedicated --config	parameter.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	11	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

3.1.2.4 Input keywords
The RCS executable calling sequence shall support at least the following input keywords:
--identification: return information about the S/W. The format and content of the
returned stream shall correspond to the "identification" JSON object in the S/W
descriptor file. (See the section 3.2 for more details about the descriptor file.)

--version: return information about the current S/W release. The content of the returned
stream shall comply the "release.version" attribute value in the S/W descriptor file.

--help: display a help message.

For instance, to get information about the current version of the S/W:

$EXECUTABLE	--version	

Where EXECUTABLE is name of the executable file.

Note:

• Input keywords do not take argument.

• Calling the input keyword does not require to provide the function name func1 as a
first argument.

3.1.3 RCS exception handling
The RCS shall include a mechanism to handle exceptions that can occur during the execution.
The exceptions to be notified to the RODP, and the expected actions to be performed by the
RCS are explained in this section.

3.1.3.1 RCS exception level definition
Table below gives the definition of the exception levels to be implemented in the RCS.

Exception	level	 Definition	
Medium It is a “warning” exception level. It alerts about a potential

issue, but does not necessarily require stopping the execution.
High It is an “error” exception level, which requires aborting the

execution.
Table 1. RCS exception levels.

3.1.3.2 Identified exceptions
A RCS shall raise an exception if it encounters one of the following events. In each case, the
RCS shall return a message giving the detailed cause of the exception.

Event	 Exception	level	 Comment	

Input(s) data file(s) cannot be
found or read correctly

High

Input(s) file(s) inconsistency High It concerns the case where the
input file(s) are not the ones
expected. (In this case the
RCS should include checking
of the input file meta-data)

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	12	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

Additional file(s) cannot be
found or read correctly

High It can concern config. file,
master CDF and/or calibration
table file(s)

Output(s) file(s) cannot be
written correctly

High e.g., bad write permissions,
output directory not found,
etc.

Log file cannot be written
correctly

High e.g., bad write permissions,
output directory not found,
etc.

S/W execution environment
not defined

High e.g., environment variables
required by the RCS are not
defined correctly

Output data file(s) not named
correctly (TBC)

Medium The RCS shall check that
name of the output files

Inconsistencies of global
attributes in the master CDF
for current output dataset
(TBC)

Medium The RCS shall check that the
global attributes in the master
CDF are consistent

Table 2. RCS exception list.

3.1.3.3 Output error code convention
If a “high” level exception is raised, the RCS shall exit with an error code 1. The error
information (i.e., code, type of error and message) shall be written in the standard error
(stderr). It will be then caught by the RODP and stored into the ROC database for
investigations. An ERROR level event shall be also reported into the log file by the RCS
before exiting (see section 5.2.1 for the definition of log levels).
If the error code is 0, the RODP will consider that the S/W execution has succeeded. Any
other code value will stop the job in the ROC pipeline and emit an error.

3.2 RCS descriptor file specification
The RCS descriptor file is the second key element of the interface with the CLI. It contains
information about the RCS that helps the RODP to automatically identify:

• The S/W it-self (e.g., name, identifier, description)
• The release (e.g., version number, release date, author)
• The execution environment (e.g., setup script, executable, configuration, etc.)
• A detailed description of the output files produced by the S/W (name, identifier,

description, release, etc.)
• The list of calling sequences for each S/W function and the corresponding inputs and

outputs

The information will be used, among others, by the RODP to automatically build the calling
sequence for a given RCS function, and to monitor the outputs creation. It results that the
RODP will not be able to run a RCS delivered without, or with a badly formatted, descriptor
file.

The content of the descriptor is checked and inserted into the RODP database during the
registration step (see section 4.1.3).

An example of such a descriptor file can be found in the appendix 6.1.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	13	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

3.2.1 General convention
The descriptor files shall be delivered with the RCS. They shall follow the convention below:

• The descriptor file shall be written in the JSON format [RD7]

• It shall be placed in the S/W main directory

• It shall be named “roc_sw_descriptor.json”

• There must be only one descriptor file per S/W and per release

• All of the paths defined in the S/W descriptor file shall be relative to the S/W main
directory.

3.2.2 Descriptor file structure
The structure of the descriptor file is detailed in the following sections.

3.2.2.1 Identification
Each S/W will be identified in the pipeline by the attributes provided in the
"identification" JSON object:

• "project": name of the project. It shall be “ROC”.
• "name": full name of the RCS, to be human readable.
• "identifier": a name used as a unique reference by the RODP to identify the S/W.

This identifier (ID) shall contain alphanumerical uppercase characters only. The
hyphen character shall be used a separator if required (e.g., “THR-CALBAR”). This
ID shall be assigned in agreement with the ROC team to avoid duplicated names.

• "description": Short description/purpose of the S/W.

3.2.2.2 Release
The "release" object shall inform about the current S/W release. It shall contain the
following attributes:

• "version": Current version of the S/W in the format following the ROC convention
[RD4].

• "date": Date of the release of the S/W in the format ‘YYYY-MM-DD’, where
‘YYYY’, ‘MM’ and ‘DD’ are respectively the year, month and date of the release.

• "author": Name of the person, team or entity responsible of the release
• "contact": contact of the author (e.g., email or address)
• "institute": Name of the institute that delivers the release
• "modification": a string containing the list of S/W modifications in the current

release.
In addition, the "release" object can provide the following optional attributes:

• "reference": name of a file as reference for the documentation, used as an indication
for the ROC team (e.g., user manual).

• "url": indication for an online resource.

3.2.2.3 Environment
The attributes defined in the object "environment" are used for setting the RCS environment
variables, and reset it to the initial state. It shall contain:

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	14	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

• "executable":	Relative path to the S/W executable file to be called by the RODP,
using the CLI. It corresponds to the EXECUTABLE	in the calling sequence example
given in the section 3.1.2.3.

In addition, the "environment"	object can contain the following optional attributes:
• "configuration": Relative path to a possible configuration file that it is required by

the S/W to run correctly. Note that if the --config common input parameter is
provided in the CLI, it supersedes the value given in this attribute.

• "activation": Relative path to the directory containing script(s) used to set up the
environment, or to be run prior to the S/W execution. The script(s) shall work in the
BASH shell and shall run without input argument.

• "deactivation": Relative path to script(s) used to reset the environment to its initial
state. The script(s) shall work in the BASH shell and shall run without input argument.

3.2.2.4 Modes
The "modes" object contains the list of S/W functions that can be run by the pipeline, when it
calls the executable file.

For each S/W function, its name, its purpose and the list of input/output datasets to be
read/saved shall be supplied. It allows the pipeline to build the S/W function input calls
automatically, and to control if the expected output data files are correctly saved.
Each function listed in the "modes" object shall contain the following attributes and JSON
arrays:

• "name": The name of the function. It corresponds to the func1	in the calling sequence
example given in the section 3.1.2.3

• "purpose": A short description of the purpose of the function
• "inputs": A JSON array containing the list of the input RPW data file(s) in CDF

format required by the function
• "outputs": A JSON array containing the list of the output RPW data file(s) in CDF

format produced by the function.

The purpose and the content of the "inputs"	and	"outputs"	objects are detailed in the two
next sections.

3.2.2.4.1 Inputs
The RODP requires information in order to identify the input data files of a given S/W
function, and to build the corresponding CLI calling sequence. Especially, in order to give the
right file path as input argument value, it needs to associate each CLI specific input parameter
of the function (e.g., --input_1), with the corresponding expected RPW dataset.

This is the aim of the "inputs" array. It contains a list of JSON objects that give, for each
related specific input parameter of the function, the ID of the RCS input RPW dataset as
referenced in the RODP database.

Each specific input parameter object shall contain the mandatory attribute:
• "identifier": The RPW dataset ID associated to the input data file, as referenced in

the RODP database.

Note:

• With this mechanism, it is not needed to provide the full path to the input data files to
the RODP. The attribute above is sufficient for the pipeline to identify a given RPW

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	15	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

dataset, and to build the path to the input data file from the information in the
database. This path can be then passed to the CLI.

• The teams are in charge to define the list of inputs for their S/W in the descriptor
file. This work must be done in collaboration with the other teams and the ROC.
Especially, the ROC shall supply as soon as possible information required to
develop and maintain the RCS and their descriptor file, including an up-to-date
list of the RPW datasets ID and versions used by the RCS.

According to the example of CLI calling sequence in the section 3.1.2.3, the "inputs" array
will be structured as followed:

"inputs":[

"input_1":{
																				"identifier":"RPW_DATASET_ID1”
																},	
"input_2":{
																				"identifier":"RPW_DATASET_ID2"
																}
],	

Where "input_1" and "input_2" objects corresponds respectively to the specific input
parameter keywords --input_1	 and --input_2, and where "RPW_DATASET_ID1” and
"RPW_DATASET_ID2”	are the corresponding RPW dataset IDs, which allow the RODP to pass
the input data file paths /path/to/input1 and /path/to/input2 in the CLI.

3.2.2.4.2 Outputs
In the same way, the RODP requires information in order to identify in the CLI specific input
parameters (e.g., --output_1) related to the RCS outputs. It will help the RODP to build the
right output file paths and names to be passed to the CLI for a given function. Additionally, it
will also allow RODP to check that these output files are correctly saved at the end of the
RCS execution.

As for "inputs, the "outputs"	array gives the list of specific input parameters information
as JSON objects, but for the RCS output data files. Each JSON objects includes the ID of the
RPW dataset, as referenced in the RODP database, but also descriptive information related to
this dataset. This information will be inserted/updated in the RODP database, each time the
descriptor is loaded (i.e., during the registration step, see section 4.1.3).
Each JSON object listed in "outputs"	shall contain the following mandatory attributes:

• "identifier": The RPW dataset ID associated to the RCS output CDF, as referenced
in the RODP. This ID shall be assigned in agreement with ROC, and following the
convention defined in [RD6].

• "name": a more human-readable name for the dataset, not necessarily unique.
• "description": a short description of the dataset.
• "level": the processing level of the dataset. The allowed values are “L1R”, "L2",

"L2R", "L2S", "L3", "L4" and "AUX".
In addition, the "outputs"	object can contain the following optional attributes:

• "template": file name to reference a data schema used for the output generation, as
an indication for the ROC team. It might be provided in the case of master CDF

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	16	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

• “reference”: Any reference (paper, note, Web site) giving a description of the
output.

Note that the RODP will perform an automated validation of the S/W descriptor file at each
new release, in order to check that the file content is consistent with the ROC database
information. In particular, it will verify that the datasets declared in the "modes"	object are
all defined in the descriptor and across S/W.

4 DESCRIPTION OF THE INTERFACE BETWEEN RODP AND RCS:
RODP SIDE

This section presents the interface, but from the RODP point of view. Especially, the basic
principle of the RCS automated deployment and execution mechanisms, to be operated by the
pipeline, are described in details.

4.1 RCS automated deployment mechanism
The RCS installation and registration mechanisms inside the RODP are detailed.

When a new release of RCS is delivered by a team, the ROC will first install and run a copy
of the S/W on its ROC development server for testing. If the testing phase has successfully
ended, then the RCS can be deployed on the prod. server.

4.1.1 RCS release delivery process
The delivery shall be done by teams in charge, following the procedure described in [RD4].
There is no specific automated process realized by the RODP concerning the RCS delivery.

4.1.2 RCS installation process
The RCS installation on the ROC servers shall be performed by the ROC using dedicated
scripts. The way the scripts will be run and what they will do are TBD.
Note that the installation step shall not include any compilation or configuration process. It
requires the teams shall ensure that their S/W are ready to be used on the ROC servers before
delivery. Especially, it means that the S/W directory shall contain all of the files required to
run the program in the ROC servers, including the executable file, when the ROC team will
deploy it.

Nevertheless, if RCS require compilations to work, the teams in charge shall also deliver all
of the source files and libraries required for the compilation, as well as any installation script.

4.1.3 RCS registration process
Once the installation process is ended, the RODP shall launch the RCS registration. This step
consists to read information in the descriptor file, check its integrity and its consistency, then
insert the content into the RODP database. The RODP shall stop the registration if the
descriptor file is not valid, or if the content inside is inconsistent with the database content.
The registration is required before running RCS into the RODP.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	17	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

4.2 RCS automated execution mechanism
4.2.1 Principle

Figure 1. RCS execution workflow.

Figure 1 shows the tasks performed by the RODP just before, during and just after the
execution of a given RCS. There are three main phases: S/W initialization, execution and
post-verification.

These three phases can be divided into six main steps:
1. Checking the integrity of the environment defined by the S/W. The validity of the

executable, activation/deactivation scripts, etc., is checked at this stage to be able to
use the S/W for following steps.

2. Checking required I/O RPW datasets have correctly been registered into the ROC
database.

3. The S/W identification is performed by the RODP (i.e., using the dedicated --
identification keyword), in order to check the consistency with the S/W
information registered in the database. Then, the same operation is done to check the
S/W version (using the dedicated --version keyword).

4. Building the CLI calling sequence with the appropriate input parameters, depending of
the RCS function.

5. Activation script sourcing, S/W execution with the CLI and deactivation script
sourcing. Specific environment configuration of the S/W can be done through the
activation and deactivation script. The latter permits to let the environment in a
cleaned state, or make some cache clean up for example.

6. At the end of the execution, the output of the S/W is analysed to check that the
expected data has been produced correctly.

If an error is encountered in any of these steps, the RODP raises an exception and the error is
stored into the RODP database for investigations.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	18	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

Details on each step are given in the following sections.

4.2.2 RCS automated validation
The validation of a RCS by the RODP is done in two steps:

• At the registration: the consistency between the required input datasets and the
existence of their definition in the RODP database will be done. If the pipeline doesn’t
find the definition in the RODP database of an input dataset, or an inconsistency in the
inter-dependency between the registered RCS is detected, the execution will be
aborted.

• At the execution: the S/W will be called with the --identification keyword before
running a function, in order to check that the information returned by the executable is
as expected (i.e, as the information read from the roc_sw_descriptor.json and stored in
the RODP database). In the case of a mismatch, the execution is stopped; otherwise
the S/W is executed as explained in the following section.

4.2.3 Environment setup
The environment setup is only necessary for S/W requiring specific environment variables to
work. The RODP will set the environment automatically before starting the related S/W
execution.

A script, defined in the "environment.activation"	attribute of the descriptor file, will be
launched by the pipeline, without any argument. The script will be loaded (i.e., "sourced")
before starting the S/W, and the stdout of the program redirected to /dev/null.
For example in BASH:

$	source	activate.sh	1>/dev/null

Where activate.sh is here the script path as read in "environment.activation".

If the S/W ends without error, the corresponding deactivation scripts will be launched (if
present), sourcing the script defined in the "environment.deactivation"field of the
descriptor file.

It must be noticed that the RODP will raise an error if the files defined in the "environment"
object are not found or not executable.

If the scripts edit the value of already existing and/or system environment variables, such as
$LD_LIBRARY_PATH or $PATH, the teams in charge shall ensure that they do not
overwrite the variable values, since they can be used by the pipeline or other S/W.
To avoid overwriting in BASH enter:

export	LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/one/more/path"

4.2.4 RCS automated execution
4.2.4.1 RODP calling sequence

The RODP module in charge of calling RCS must provide commands for automated launches
of a given S/W function, and with specific input files. Used to run the S/W on a specific file
with specific conditions to reproduce an isolated problem.
A typical use case for the command is:

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	19	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

$pop	 cawa	 run	 CAL-SOFT	 calibration1	 –output-1	 /path/to/output1	 \
				--log	 /path/to/log	 --inputs	 --input-1	 /path/to/input1	 --input_2	
/path/to/input2

Where pop is the executable of the RODP and cawa is the module in charge of RCS calls.

If the S/W is already registered into the RODP database with the name CAL-SOFT, the latter
will run the S/W function, named calibration1 in the example above, only if defined in the
descriptor file. Passing argument for outputs and log paths as if it was the RODP while
running, and all inputs and other flags following the --inputs flag are transmitted directly to
the software executable.
Inputs arguments that must be given to the S/W executable must follow the --inputs
flag, which must be placed after all other arguments and flags.
The --inputs flag is specific to the CaWa CLI, and must be only used by the pipeline in
its CLI. The RCS CLI is not expected to include this flag.

4.2.4.2 Example
Figure 2 illustrates the execution schema of two functions “calibration_X” and
“calibration_Y” of a given RCS by the RODP. These two functions are respectively in charge
of producing “Output X-a/b” and “Output Y-a/b” data files from the input data files “Input X-
a/b” and “Input Y-a/b”.

The pipeline’s choice to call these functions is made as a first step during the “Calibration
mode selection” using the information provided inside the "modes"	JSON object of the S/W
descriptor file. Especially, it will allow the RODP to build the list of the input/output file
paths to be passed/returned to/by the S/W, from the information saved in the RODP database.

The path of the log file and possibly the configuration file are provided by the RODP with the
corresponding flags, respectively --log and --config.

If the S/W ends correctly, the pipeline will check that the outputs have been saved as
expected, and then will insert the outputs meta-data (e.g., path, creation date, etc.) into the
RODP database.
If an exception occurs during the execution, the S/W shall transmit all the relevant
information through the stderr, as explained in the section 3.1.3.
Teams shall be aware that the pipeline will not call the S/W at all in the case where, at
least one of the input files defined in the "inputs"	 of the descriptor is not found. It
should be taken into account in the S/W architecture design, especially when defining
the number of available modes.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	20	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

Figure 2. Detail of the execution of a RCS.

4.3 RCS testing mechanism
4.3.1 End-to-end test

The ROC team shall be able to easily check the RCS performances just after S/W deployment
on the ROC server. To achieve this goal, each S/W shall be delivered with a set of input data
files and their corresponding expected output files.

To perform the verification test, the ROC will run S/W using this input data set, and will
compare the resulting data files with the expected outputs.

The details of how this end-to-end test will be done and the testing data set will be delivered
to ROC are TBD.

4.3.2 Interface compliance test
If the S/W is not yet registered and ROC developers want to check the compliance with the
RODP interface, i.e., present ICD, the following command can be launched:

$	 pop	 cawa	 test	 /path/to/sw/root/directory	 calibration1	 –output-1	
/path/to/output1/	 \
				--log	 /path/to/log	 --inputs	 --input-1	 /path/to/input1	 --input_2	
/path/to/input2

Which will do exactly the same thing as the command showed in the section 4.2.4.1, but using
only the S/W at the root directory provided as first argument of the test sub-command.

Inputs arguments that must be given to the S/W executable must follow the --inputs
flag, which must be placed after all other arguments and flags.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	21	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

The --inputs flag is specific to the CaWa CLI, and must be only used by the pipeline in
its CLI. The RCS CLI is not expected to include this flag.
Teams that want to test the compliance with the RODP interface can use the dedicated tool
described in [RD8].

5 RCS OUTPUTS CONVENTIONS
This section list conventions concerning the expected RCS outputs.

5.1 Science data convention
The RCS science data products shall comply the convention described in [RD5].

5.2 RCS log file convention
This section describes the convention concerning the log file, to be generated by the RCS
during its execution at the ROC site.

5.2.1 General convention
Teams in charge shall follow the following log file related general convention:

• There shall be one log file per S/W.

• The S/W it-self shall create the log file. If an existing log file with the same name is
found in the log directory, the S/W shall not create a new log file, but shall append
new entries in this file.

Note that the ROC might need at some points to move an existing log file from the log
directory.

5.2.2 File naming convention
The RCS log file shall follow the file naming convention:

[rcs_name].log
Where [rcs_name] is the name of the RCS in lower case characters, with only hyphens “-“ or
underscores “_” as separators (e.g., thr_calbar.log).
It must be noticed that, in practice, this naming convention is only applicable to the ROC
team, since the log file is an input argument of the RCS.

5.2.3 Format and content
The log file shall be an ASCII format file. It shall contain enough information about the
execution of the RCS, in order to allow the ROC and the teams in charge to monitor the S/W
behaviour and to diagnose unexpected events.
Each line of the file shall start with the following prefix:

[YYYY:MM:DD] [hh:mm:ss] -- [log_level] – [message]
Where [YYYY:MM:DD] and [hh:mm:ss] are the date (YYYY=4-digits year, MM=2-digits
month and DD=2-digits day of month) and time (hh=2-digits hours, mm=2-digits minutes and
ss=2-digits seconds) of the log event. [log_level] is the level of severity of the log event (see
table in the next section) and [message] is a one line description of the log event.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	22	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

5.2.1 Log event severity levels
Table below gives the list of event severity levels to be used in the RCS log file.

Severity	level	 Definition	 Actions	to	be	performed	by	the	
RCS	

DEBUG Debug event
(only used in
debug mode)

No specific action

INFO Normal event
(e.g., RCS
start/end times,
routine tasks
information,
etc.)

No specific action

WARNING Event that
requires
attention, but
does not
compromise
the software
execution or
data production

No specific action

ERROR Event that
requires special
attention, and
compromises
the data
production or
the software
execution
(e.g.,
unexpected
values in the
data, not input
data file found,
env. variable
not well
defined, etc.)

Stop the software execution and
exit with an exception (error code
1)

Table 3. RCS log event severity levels.

6 APPENDICES

6.1 Example of a RPW S/W descriptor file
Here is an example of a RPW descriptor file for the THR Calibration software
(THR_CALBAR) RCS.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	23	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

{	
				"identification":	{	
								"project":	"ROC",	
								"name":	"THR-CALBAR",	
								"identifier":	"ROC-THR-CALBAR",	
								"description":	"The	RPW	TNR-HFR	CALibration	softwARe	(THR-CALBAR)		
produces	RPW	TNR-HFR	calibrated	science	data"	
				},	
				"release":	{	
								"version":	"1.1.0",	
								"date":	"2015-07-29",	
								"author":	"Antonio	Vecchio",	
								"contact":	"antonio.vecchio@obspm.fr",	
								"institute":	"LESIA",	
								"modification":	"Update	tnr_l2r_calibration	function",	
				},	
				"environment":	{	
								"activation":	"scripts/setup_thr-calbar_env.sh",	
								"deactivation":	"scripts/unset_thr-calbar_env.sh"	
					 		"executable":	"bin/thr-calbar-api",	
								"configuration":	"config/thr-calbar_configuration.json"	

				}	
				"modes":	[
								{	
												"name":	"tnr_l2r_cal",	
												"purpose":	"Produce	calibrated	science	TNR	data	file	at	analys
er	level	(L2r)",	
												"inputs":	{	
																"input_l1_tnr":	{	
																				"identifier":	"RPW_TNR_L1-SURV"	
																}	
												},	
												"outputs":	{	
																"output_l2r_tnr":	{	
																				"identifier":	"RPW_TNR_L2R-SURV",	
																				"name":	"RPW	TNR	L2R	survey	data",	
																				"description":	"RPW	TNR	L2R	science	data	in	survey	for
RODP",	
																				"level":	"L2R",	
																}	
												}	
								},	
								{	
												"name":	"hfr_l2r_calibration",	
												"purpose":	"Produce	calibrated	science	HFR	data	file	at	analys
er	level	(L2R)",	
												"inputs":	{	
																"input_l1_hfr":	{	
																				"identifier":	"RPW_HFR_L1-SURV"	
																}	
												},	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	24	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

												"outputs":	{	
																"output_l2r_hfr":	{	
																				"identifier":	"RPW_HFR_L2R-SURV",	
																				"name":	"RPW	HFR	L2R	survey	data	",	
																				"description":	"RPW	TNR	L2R	science	data	in	survey	for	
RODP",	
																				"level":	"L2R"	
																}	
												}	
								}	
]	
}	

6.2 Examples of a CLI calling sequence
With the following configuration, the pipeline will call the S/W for the calibration mode
tnr_l2r_cal as (assuming that the environment as been setup previously and that the path to
the S/W directory is contained in the $SW_ROOT variable):

$$SW_ROOT/bin/thr-calbar-api	tnr_l2r_cal	--input_l1_tnr	/path/to/input_cdf	
\
				--output_l2r_tnr	/path/to/output_cdf	--log	/path/to/log/directory	\
				--config	$SW_ROOT/config/configuration.file

If the S/W ends without error, then the RODP will search for a file at /path/to/output_cdf.

If an error occurs, the S/W must stop with an error code greater than 0 and a relevant message
in stderr. If the error can be caught by the RODP, it will store not necessarily useful
information.

For the identification command, the S/W will return the following JSON message in the
stdout:

$	$SW_ROOT/bin/thr-calbar-api	--identification
{
				"project":"ROC",
				"name":"CALBAR",
				"identifier":"RPW-TEST-CALBAR"
}

, and for the version command:

$	$SW_ROOT/bin/thr-calbar-api	--version
{
				"version":"1.1.0"
}

6.3 ROC S/W descriptor file validation
A JSON format file, as for XML, can be validated against a schema. A JSON schema is
following the specifications from http://json-schema.org/draft-04/schema. Dedicated
documentation can be found at https://spacetelescope.github.io/understanding-json-schema.

The JSON schema for the ROC S/W descriptor file is described below. It will be used by the
ROC to automatically validate a S/W descriptor file after delivery.

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	25	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

{
				"$schema":"http://json-schema.org/draft-04/schema#",
				"definitions":{
								"input":{
												"type":"object",
												"patternProperties":{
																"^[A-Za-z][\\w-]+$":{"$ref":	"#definitions/input_dataset"}
												},
												"additionalProperties":false
								},
								"output":{
												"type":"object",
												"patternProperties":{
																"^[A-Za-z][\\w-]+$":{"$ref":	
"#definitions/output_dataset"}
												},
												"minProperties":1,
												"additionalProperties":false
								},
								"mode":{
												"type":	"object",
												"properties":	{
																"name":	{
																				"type":	"string",
																				"pattern":	"^[A-Za-z][\\w-]+$"
																},
																"purpose":	{"type":	"string"},
																"inputs":	{"$ref":	"#definitions/input"},
																"outputs":	{"$ref":	"#definitions/output"}
												},
												"required":	["name",	"purpose",	"inputs",	"outputs"],
												"additionalProperties":	false
								},
								"release":	{
												"type":	"object",
												"properties":	{
																"author":	{"type":	"string"},
																"date":	{
																				"type":	"string",
																				"format":	"date-time"
																},
																"version":	{
																				"type":	"string",
																				"pattern":	"^(\\d+\\.)?(\\d+\\.)?(\\d+)$"
																},
																"file":	{"type":	"string"},
																"institute":	{"type":	"string"},
																"reference":	{"type":	"string"},
																"url":	{
																				"type":	"string",
																				"format":	"uri"

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	26	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

																},
																"contact":	{
																				"type":	"string",
																				"format":	"email"
																},
																"modification":	{"type":	"string"}
												},
												"required":	["author",	"date",	"version"],
												"additionalProperties":	false
								},
								"output_dataset":	{
												"type":	"object",
												"properties":	{
																"identifier":	{
																				"type":	"string",
																				"pattern":	"^[\\w-]+$"
																},
																"name":	{"type":	"string"},
																"level":	{"enum":	["L0",	"L1",	"L2R",	"L2S",	"L2",	"L3",	
"AUX",	"LL01",	"LL02",	"HK"]},
																"description":	{"type":	"string"},
												},
												"required":	["identifier",	"name",	"level",	"description"],
												"additionalProperties":	false
								},
								"input_dataset":	{
												"type":	"object",
												"properties":	{
																"identifier":	{
																				"type":	"string",
																				"pattern":	"^[\\w-]+$"
																},
												},
												"required":	["identifier"],
												"additionalProperties":	false
								}
				},
				"type":	"object",
				"properties":	{
								"identification":	{
												"type":	"object",
												"properties":	{
																"project":	{"type":	"string"},
																"name":	{"type":	"string"},
																"identifier":	{"type":	"string"},
																"description":	{"type":	"string"}
												},
												"required":	["project",	"name",	"identifier"],
												"additionalProperties":	false
								},
								"release":	{"$ref":	"#definitions/release"},
								"environment":	{

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	27	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

												"type":	"object",
												"properties":	{
																"activation":	{"type":	"string"},
																"deactivation":	{"type":	"string"}
												},
												"additionalProperties":	false
								},
								"executable":	{"type":	"string"},
								"configuration":	{"type":	"string"},
								"modes":	{
												"type":	"array",
												"items":	{"$ref":	"#definitions/mode"}
								}
				},
				"additionalProperties":	false,
				"required":	["identification",	"release",	"environment",	"executable",	
"modes"]
}

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	28	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	29	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

7 LIST OF TBC/TBD/TBWS
TBC/TBD/TBW	

Reference/Page/Location	 Description	 Type	 Status	

	

RPW	Calibration	Software	
Interface	Control	Document	

Ref:	ROC-PRO-PIP-ICD-00037-LES		
Issue:	01	
Revision:	01	
Date:	19/03/2017	
																																													-	30	/	30	-	

ROC-PRO-PIP-ICD-00037-LES_Iss01_Rev01(RPW_Calibration_Software_ICD).Draft.docx

8 DISTRIBUTION LIST

LISTS
See Contents lists in “Baghera Web”:
 Project’s informations / Project’s actors / RPW_actors.xls

 and tab with the name of the list
 or NAMES below

 Tech_LESIA

 Tech_MEB

 Tech_RPW

 [Lead-]CoIs

 Science-CoIs

INTERNAL		

LESIA

CNRS

LESIA

CNRS

EXTERNAL	(To	modify	if	necessary)	

CNES

 C. FIACHETTI

AsI/CSRC

 J.BRINEK

 C. LAFFAYE P.HELLINGER

 R.LLORCA-CEJUDO D.HERCIK

 E.LOURME P.TRAVNICEK

 M-O. MARCHE

IAP

 J.BASE

 E.GUILHEM J. CHUM

 J.PANH I. KOLMASOVA

 B.PONTET O.SANTOLIK

 J. SOUCEK

 L.UHLIR

IRFU

 L. BYLANDER

IWF

 G.LAKY

 C.CULLY T.OSWALD

 A.ERIKSSON H. OTTACHER

 SE.JANSSON H. RUCKER

 A.VAIVADS M.SAMPL

 M. STELLER

LPC2E

 P. FERGEAU

LPP

 T.CHUST

 G. JANNET A. JEANDET

 T.DUDOK de WIT P.LEROY

 M. KRETZSCHMAR M.MORLOT

 V. KRASNOSSELSKIKH

SSL S.BALE

