
Check the RNC site before using to ensure that the version used is the applicable version.

CNES
STANDARDS REFERENCE

Re f e ren ce : RNC-CNES-Q-HB-80-501

V ers i o n 4

17 September 2009

MANUAL

PRODUCT ASSURANCE

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

APPROVAL of
Standardisation Office

BN no. 39 dated 25/02/08 – BN no. 44 dated 08/09/08

BN no. 54 dated 16/09/09

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 3

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

DOCUMENT ANALYSIS PAGE

TITLE: COMMON CODING RULES FOR PROGRAMMING LANGUAGES

KEYWORDS: Common rule Generic Programming language

EQUIVALENT STANDARD : None

REMARKS : None

ABSTRACT : This document sets out the common rules for using programming languages.

DOCUMENT STATUS: This document is part of the collection of approved Manuals in the CNES
Standards Reference. This document is affiliated to document RNC-ECSS-ST-Q-80 "Software Product
Assurance".

NUMBER OF PAGES : 83 Language : English (translated from the original
French)

SOFTWARE PACKAGES USED / VERSION : Word 2007

MANAGING DEPARTMENT : General Inspectorate and Quality Directorate (IGQ)

AUTHOR(S): DATE: 17/09/09

Jean-Charles DAMERY

© CNES 2009

Reproduction strictly reserved for the private use of the copier, not intended for collective
use (article 41-2 of Law no. 57-298 of 11 March 1957).

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 4

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

MODIFICATION REVISION SHEET

VERSION DATE PAGES MODIFIED REMARKS

1 10/12/2006 Creation Creation with the support of T. Leydier
(Virtual Reality). See “FEB 48/2006”
accepted in BN no. 22 dated 06/03/06.

Document accepted in BN no. 34 dated
25/06/07 for document to be
introduced in the RNC.

2 10/04/2008 Page 74 § 8.1 Following “FEB 77/2008” accepted in
BN no. 39 dated 25/02/2008,
correction of a minor error in the
summary table of rules.

3 02/06/2008 All Change of nomenclature following the
ECSS benchmarking stage (former
reference "RNC-CNES-Q-80-501").

4 17/09/2009 Following “FEB 91/2009” accepted in
BN no. 54 dated 16/09/09 introducing
the new manual “RNC-CNES-Q-HB-
80-535” in the RNC, the tailoring tool
in document “RNC-CNES-Q-HB-80-
501” is updated.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 5

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

TABLE OF CONTENTS

1. INTRODUCTION...6

2. PURPOSE..6

3. SCOPE ...6

4. DOCUMENTS...6

4.1. REFERENCE DOCUMENTS...6
4.2. APPLICABLE DOCUMENTS..6

5. TERMINOLOGY ...7

5.1. GLOSSARY...7
5.2. ABBREVIATIONS..7
5.2.1. Rule coding ...7
5.2.2. Other abbreviations or acronyms ..9

6. COMPLIANCE WITH RELEVANT SPECIFICATIONS AND STANDARDS9

7. RULES ...10

7.1. CODE DESIGN / ORGANISATION..10
7.2. CODE LAY-OUT ..17
7.3. IDENTIFIERS..21
7.4 DATA ...27
7.5. PROCESSING..38
7.6. ERROR MANAGEMENT...51
7.7. DYNAMIC ..58
7.8 INTERFACES...62
7.9. QUALITY ...65

8. SUMMARY ...73

8.1. RULE SUMMARY TABLE ..73
8.2. "COMMON" TRACEABILITY ..78

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 6

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

1. INTRODUCTION

The document "Common Coding Rules for Using Programming Languages" is affiliated with the document
RNC-ECSS-Q-ST-80 "Software Product Assurance". It describes applicable rules for the programming
languages used by CNES.

2. PURPOSE

The aim of this document is to establish common rules for programming languages. These rules have been
established based on the “state of the art” and the “lessons learned” accumulated over the projects. This
document is essential when using a programming language for a CNES project. It is supplemented by
documents that are specific to each language.

3. SCOPE

This document applies to all CNES projects.

It must be adapted and/or completed by the Project Manager and/or Quality Engineer as regards code
organisation, identifier nomenclature and any other specific rules according to established quality objectives
that may be defined using the RD1 document.

This document is never used alone, but rather is used in conjunction with the language document; for
example, for a JAVA project, common rules will be combined with the rules presented in the JAVA manual.
This combination and rule selection will be performed at project outset using a tailoring tool.

The tailoring tool is an interface that allows the appropriate common rules and "language" to be selected for
each project, according to the project's criteria (maintainability, criticality, test effort). It is included in this
document; it may also be activated by clicking on the button below:

Lancer l'outil de tailorisation

Remark: The language manuals used by the tailoring tool must be in the current directory.

4. DOCUMENTS

4.1. REFERENCE DOCUMENTS

RD Identification Title

(RD1) RNC-ECSS-Q-ST-80 Software Product Assurance

4.2. APPLICABLE DOCUMENTS

AD Identification Title

None

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 7

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

5. TERMINOLOGY

5.1. GLOSSARY

Term Definition

Library A group of functions or procedures with a common theme.

Function
An operation that provides a result. A function does not generally modify the value
of its parameters.

Module
A programming unit that groups together data and operations. Modules are
generally associated with a code file.

Operation A processing unit (a software procedure or function that performs processing).

Scope

The programming area in which data may be used: when the scope is local, data
may be used locally, in a function, for example; when it is global, the data may be
used anywhere in the code.

Procedure

An operation that does not produce a result, and which groups together
instructions. Unlike functions, procedures may modify the value of their
parameters.

Main program An operation that starts program execution.

Sub-program A function or sub-program.

Task A control flow managed at operating system level. A synonym of a process.

Tailoring
A selection of rules applicable to the project, which may involve adaptation or the
addition of new rules.

Thread

A control flow that is lighter than a task and managed at language level.

By "light", we mean:

- memory space is shared between the threads of a process.

- changing thread context from one to another is faster than changing process
context from one to another.

5.2. ABBREVIATIONS

5.2.1. Rule coding

Each rule is presented in a table containing 4 items of information:

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 8

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

<Identification>

<Tailorisation>

<Type de Projet>

<rule title>

This table features the following fields:

• Rule identification as a <sub-chapter>.<rule code>; the sub-chapter is standard and is coded using a
standard mnemonic. The following coding is used for sub-chapters:

Org: Code organisation
Pre: Code presentation
Id: Identifiers
Data: Data
Pro: Processing
Err: Error management
Dyn: Dynamic
Int: Interfaces
QA: Quality
OR: Other rules

• Rule title: this is the rule label.
• Tailoring: this is a field for defining 4 quantitative tailoring parameters. These parameters are
identified by a letter and are presented as follows:

o M=<m>;R=<r>;P=<p>;V=<v>
o With

� m: a maintainability score from 0 to 3 (0 = the rule has little impact on
maintainability, 3 = the rule significantly impacts maintainability)

� r: a reliability score from 0 to 3 (0 = the rule has little impact on reliability, 3
= the rule significantly impacts reliability)

� p: relative priority from 1 to 200; this information allows rules to be
classified (1 = the most important rule, 200 = the least important rule)

� v: verifiability score from 0 to 2 (2 = rule is easily verified (usually
automatically using an analyzer), 1 = rule is not easily verified (rule
compliance may generally be assessed by combining manual actions and
analyzer results), 0 = rule can not be verified).

These scores have been gathered from the lessons learned by the authors of this
document. They may change in accordance with forthcoming lessons learned.

• Project type: this is another tailoring parameter; it defines the project category concerned by the rule.
It must be selected from among the following values: On-board, Ground, Any.

The rule is completed by 3 mandatory paragraphs:

• a description,
• a justification,
• examples.

Example of a rule:

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 9

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

id.NomDonnee

M=3;R=0;P=43;V=0

Any

The name of a datum must be a common name taken from everyday
language; the plural form must be used if the datum is a set or group.

Description

Not Applicable

Justification

Enhances readability.

Example

In C++
TheStarTracker
TheResults
TheDaysOfTheWeek

5.2.2. Other abbreviations or acronyms

Term Definition

RNC CNES Standard Reference

6. COMPLIANCE WITH RELEVANT SPECIFICATIONS AND STAN DARDS

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 10

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7. RULES

7.1. CODE DESIGN / ORGANISATION

Org.DonneesOper

M=3;R=0;P=41;V=0

Any

Data and operations must be grouped together in modules to form consistent
packages, by using the available resources of the language.

Description

This rule concerns all resources and all conceptual levels proposed by the language used, in regard to
modularity.

Justification

Reinforces the priority and precedence of design activities over coding activities.
Ensures consistency between software design and code.

Example

In SHELL
This rule concerns scripts.

In ADA
This rule concerns units, packages and libraries.

In C++
This rule concerns classes, files and namespaces.

In JAVA
This rule concerns classes, files and packages.

In FORTRAN
An example of grouping data to manage a valve:

module VALVES
 ! ========= defining a valve =================
 integer, parameter :: StatusOpen = 1, &
 StatusClosed = 2, &
 StatusTransitional = 3
 type VALVE
 integer :: ident
 integer :: status
 real(DOUBLE) :: flowrate
 integer :: upstream, downstream
 end type VALVE
 ! ========= global valve table, by ident ====
 integer, parameter :: MaxNoValves = 1000
 type(VALVE), dimension(MaxNoValves) :: VALVE_TAB LES
 ! ========= valve file =====================
 character(LEN=*), parameter :: ValvesFile = ’val ves.dat’
 integer, parameter :: ValvesChannel = 17
 ...
end module VALVES

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 11

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Org.ModuleNom

M=1;R=0;P=105;V=0

Any

A module name must convey the conceptual unit that the module represents

Description

This rule concerns all types of conceivable modules, according to the language concerned. It also
concerns associated files, their location, name and file extension. It is a logical consequence of the rule
Org.DonneesOper .
The rule must be adapted to production environment constraints, such as: The file management system,
the use of a code generator or compiler constraints.
Correspondence rules between "design units" and "support source file" must also be defined.

Justification

Enhances source readability.

Example

In ADA
A file name uses the name of the Ada compiler unit that it contains.
If it is a separate unit, the file name has the same prefix as the parent unit.
A file name that contains a package (resp. a body) specification has a suffix of _s (resp. _b) or has
the extension .ads (resp. .adb).

In SHELL
Scripts have a descriptive name that will use the processing name plus the extension '.sh'.

In IDL
The suffix ".pro" must be used for IDL source files.
Define a suffix for batch files (for example, ".inc")

Org.Couplage

M=3;R=1;P=32;V=1

Any

Linking between modules must be minimised: use links between modules must
be uni-directional and be fewer than a limit set for the project.

Description

Dependence between modules must be ordered and limited. Circular links are prohibited. The number of
external variables (common to several compilation units) must be limited. References between modules
performed using instructions such as "use" or "include" must be ordered and limited.

Justification

Significant linking complicates maintenance: changes made to a module may require changes to all
dependent modules, and will, at best, require a regression search to be performed for these modules.

Example

In ADA
Context clauses (with clause) in specifications for a package and/or its body define the entities
needed by the specification and/or the package body. These clauses must not be used unless it is
strictly necessary.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 12

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

In C and C++
Global "include" should be avoided; only truly useful files should be included. A limit should be
created for the number of files included and the level of inclusion.

In JAVA
"Generic" imports (that use *) should be avoided.

In FORTRAN, PVWAWE and IDL
The use of commons should be limited.

Org.Masquage

M=2;R=1;P=44;V=1

Any

Data usage links should be avoided: read- and write-access operations should be
used instead (information masking and data encapsulation principle), when this
principle is not overly prejudicial for the language used.

Description

The only data that can be directly accessed are constants.
In case a significant optimization of the execution time is needed, the rule may be waived: direct access to
member data is quicker than a function, particularly when the language concerned does not support inline
functions.

Justification

References to member data are uniform in the whole user code because functional notation must be used.
The mode of access to member data may be controlled, thereby facilitating maintenance and updating: for
example, all updates for a given piece of data may be traced via its write-access method.

Example

In C++
Member data will be declared "private" and access operations will be defined:

Changing implementation of a class which is transpa rent for users:
// File "Person.h"
class Person {
public: // Read access
 const Date& BirthDate();
 int age();
private:
 Date BirthDate_;
 int age_; // Data derived from BirthDate_
};
#include "Person.I"
// File "Person.I"
inline Person::BirthDate() { return BirthDate_; }
inline Person::age() { return age_; }

A second implementation is defined afterwards to mi nimise occupied memory
space, even if this adversely impacts performance: the member data " age_"
is deleted and age is calculated in the " age()" method using
" BirthDate_".
This change of implementation is transparent for us er classes because the
interface for the Person class is unchanged.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 13

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

In ADA
Package variables must be manipulated using only the primitives provided in the package
specification. The variables themselves are declared in the package bodies and never in the
specification.

In FORTRAN 90
Only the named constants will have PUBLIC visibility.

Org.Module

M=1;R=0;P=104;V=1

Any

The code lay-out of each module must be standardised for the project.

Description

Code lay-out concerns general aspects of the modules: compilation units and files, data declaration and
the declaration of procedures, functions and other services.

Justification

Common code lay-out facilitates maintainability.

Example

In PVWAWE
A standard code lay-out for services and command files should be defined. For example, each
service must contain:
- a header:
 - the name of the service,
 - the version,
 - the author,
 - the creation date,
 - a description,
 - a list of services used,
 - the call mode, as well as a description of parameters,
 - the COMMONs used,
 - a list of local variables,
 - the service's algorithm.
- the service body:
 - the inclusion of files,
 - the initialisation of return parameters,
 - the declaration (initialisation) of local variables,
 - a presence and validity test for optional variables,
 - processing,
 - error labels,
 - an end label.

In C++
It is recommended that public constructors and destructors be declared first.
A useful rule involves first establishing method categories and grouping the methods for a class
interface according to these categories (constructor, destructor, access, status, etc.). Each category is
introduced by a comment, which gives its name after the keyword public (which may be repeated
more than once in C++). Method categories always appear in the same order in all classes.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 14

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Org.MultiLang

M=1;R=1;P=58;V=0

Any

When more than one programming language are used for a project,
correspondence rules must be defined for the elements exchanged between the
languages.

Description

The same identifiers should be used in each language, wherever possible. Case should also be respected
(upper/lowercase). At the same time, when two neighbouring languages are mixed, thereby potentially
creating confusion, mixing should be limited, and a rule should be defined to differentiate the two
languages when they coexist.

Justification

This rule facilitates application maintenance and readability.

Example

In PVWAWE
Use the same variable names with the C/Fortran and WAVE programming languages.

In C and C++
C and C++ do not use the same mechanisms for passing parameters. If a C function is called in C++,
its belonging to the C language must be highlighted in the identification of the function, and vice
versa.

Org.Duplication

M=3;R=1;P=24;V=1

Any

Code duplication must be avoided by intelligently using the techniques available
at language level (passing parameters, using abstract operations, using
metalanguages).

Description

Each language proposes techniques for avoiding duplication: these techniques should be studied on a
case-by-case basis, and the most appropriate technique selected. It is up to the programmer to choose the
technique, but this is often a high-level decision that may be traced back to the design stage. In addition,
this choice must account for the fact that excessive abstraction may adversely impact program
maintainability. Consequently, in certain cases, parameterisation is preferable to generic programming.

Justification

Duplication must be avoided as it generates extra costs and a high risk for inconsistency in maintenance.
The various techniques proposed by the languages are not equivalent: choosing an inappropriate
technique may produce code that is not very readable or efficient.

Example

In C, C++ and ADA:
Some "short" functions may generate more instructions in passing the parameters, calling the
function, returning, deleting parameters, than for the functionality itself. The inline instruction
suggests to the compiler that the function's call code should be replaced by function code expansion.
It may also be useful to use this mechanism for a larger function called only one time.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 15

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

In C++ and JAVA:
Function model and polymorphism are two concurrent techniques for generic programming. One or
the other should be selected after examining the advantages and disadvantages offered on a case-by-
case basis.

In C++:
Example of factorial calculation using a function model:

// recursion is used to iterate
template<int n>
inline int FACT () { return n * FACT<n-1>() ;}

// specialisation is used to stop recursion
inline int FACT<0> () { return 1 ;}

Org.Principal

M=0;R=1;P=94;V=0

Any

The main program must be limited to the highest-level control flow: creating
tasks, initialisation, sequencing. It must not contain processing algorithms or
calculations.

Description

The main program must be short. It must summarise the processing process. It handles activation of
general initialisation processing, of one or more processes required to attain a set target, and manages
errors returned by called sub-programs.

Justification

Program understanding is facilitated if the main program contains only the software control flow.

Example

In FORTRAN
PROGRAM DEMO
 declaration of variables
CALL INIT1
IF (condition) THEN
 CALL PROC1
 CALL CONT1

ELSE
 CALL PROC2
ENDIF

END

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 16

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Org.MatérielIndep

M=2;R=0;P=84;V=0

Any

Codes that have dependencies with hardware or operating system must be kept
separate from the rest of the software code.

Description

Dissociate as much as possible the hardware interface and operating system from the software being
developed. This rule must be applied, even if a homogeneous module need to be divided in order to
extract the non-portable functionalities.

Justification

Enhances portability.

Example

Not applicable.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 17

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.2. CODE LAY-OUT

Pr.Indentation

M=2;R=0;P=74;V=2

Any

Code must be indented. A convention for representing control structures must be
defined and respected.

Description

The code created must use uniform indentation throughout the entire project. The recommended value for
indentation is 3 characters. The value used for indentation may be conditioned by the code editing,
presentation and printing tool used for the project. A convention for control structures lay-out must also
be defined.

Justification

Indentation enhances readability and improves code comprehension.

Example

In IDL:
Control structures are explicitly written in IDL:
Example of presentation of WHILE

WHILE (index GT 3) DO BEGIN
index = index + 1
PRINT, “INDEX = “, index

ENDWHILE

Pr.Aeration

M=2;R=0;P=75;V=2

Any

The text in a program must be well-spaced. Operators and operands must be
separated by spaces.

Description

Unary operators must be followed or preceded by their operand without spaces. Binary operators must
feature spaces on either side.

Justification

Ensures uniform program presentation and allows unary operators to be distinguished from other
operators.
Enhances readability.

Example

In C:
Result = x + y ;

Pr.Instruction

M=2;R=0;P=76;V=2

Any

There should be no more than one instruction per line.

Description

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 18

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Long instructions may extend over several lines; they must therefore be cut:
• before: reserved words, operators, assignment symbols, opening parentheses
• after: a comma, semi-colon

Justification

Ensures uniform program presentation and allows unary operators to be distinguished from other
operators.
Enhances readability.

Example

In FORTRAN 77
The character "&" is used to indicate following line (in column 6).

In ADA
THE_ACCUMULATION_OF_TWO_LONG_IDENTIFIERS
 := THE_VALUE_OF THE_FIRST_IDENTIFIER
 + THE_VALUE_OF THE_SECOND_IDENTIFIER;

Pr.LongLine

M=2;R=0;P=77;V=2

Any

The maximum number of characters in a line of source code is less than a limit
defined for the project.

Description

The limit must be established. Firstly, it must account for potential compiler limits. Secondly, it must
ensure that the project entry, display, analysis and printing resources all allow the code to be readily
handled and consulted.
A high limit will be set to allow the programmer to readily enter code, insomuch as the rules proposed
here create long lines: descriptive name, prefix, naming by association, parameter alignment, indentation,
etc.
This also applies to comments.

Justification

Certain compilers ignore the characters that exceed a given line length. After a certain length, long lines
are not easily displayed and printing is truncated. Setting a maximum code line length in the project at a
high value, but one that is below set limits, facilitates compilation, and source handling and consultation.

Example

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 19

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Pr.CartStd

M=2;R=1;P=50;V=1

Any

A standard comment box defined for the project must be used to comment on the
header of each module and the definition of an operation.

Description

This header presents the essential logic behind the module or the operation, as well as critical
programming aspects (for example: pre-conditions for calls, processing exceptions, possible side effects,
portability constraints, task synchronisation conditions, etc.). A header may be addressed to the person
using or maintaining the module.
The exact contents of headers should be set out in the initial conventions of each project.

Justification

This rule results in a more uniform, readable and maintainable code.
It guarantees the existence of at least one header per file.

Example

In C
File header comment (c or h):

/// //////////////////////
// PROJECT: <>
// APPLICATION: <>
// AUTHORS: <>
// CREATION DATE: <>
// DESCRIPTION: <>
//
/// //////////////////////

Function header comment:
/// //////////////////////
// FUNCTION NAME: <>
// ROLE:
// INPUT PARAMETERS:
// UPDATE PARAMETERS:
// RETURN CODE: <>
/// //////////////////////

Pr.CartDonnée

M=2;R=0;P=78;V=1

Any

Each data declaration must be commented.

Description

Variables must be presented and commented, particularly those with critical functional importance.

Justification

Maintenance is significantly facilitated.

Example

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 20

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Pr.CommFonc

M=3;R=0;P=42;V=0

Any

Comments must be functional and not duplicate the code.

Description

Comments must serve exclusively to provide additional information to the reader; they must supplement
the information that the reader finds in the code itself, such as the names of types, variables, formal
parameters, loops, blocks and exits, in the introduction of temporary variables or sub-types, and in using
qualification or renaming. The additional information provided by the comment must be significant: a
specific feature of the variable, the purpose of the block, the originality of the algorithm, etc.
Comments must not be used to paraphrase or to make up for inexpressive names of identifiers, parameters
or functional blocks. The goal is therefore not to attain a certain percentage of comments, but rather to
have only useful comments.
Comments provide the answers to "why" while the code indicates "how".
Comments may also be non-existent if the code is expressive enough on its own.

Justification

Limits double maintenance and code/comment discrepancies.

Example

Not Applicable

Pr.CommIdent

M=2;R=0;P=79;V=2

Any

Comments must be located in the same area as the relevant code, and indented at
the same level as this code.

Description

For short assignment instructions, comments should be placed at the end of the line.
In languages such as C, C++ or JAVA, the series of closing brackets does not indicate to which opening
bracket it corresponds. Incorrectly positioned closing brackets are a frequent cause of errors. Comments
allow ambiguity to be avoided.

Justification

Enhances visibility.

Example

In C:
In C or C++, each closing bracket can have comments.

while (Condition)
{
 Processing_1;
 if (Condition_2)
 {
 Processing_2;
 } // end of case 2
} // end of processing loop body

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 21

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.3. IDENTIFIERS

Id.IdentSignif

M=3;R=1;P=25;V=0

Any

Identifiers must be descriptive.

Description

Identifiers should be chosen for their explicitness. Abbreviations are prohibited unless found in the
project glossary or an integral part of the project culture.

Justification

Attempt to have source language that is as close to natural language as possible, which may be readily
understood and which is unambiguous.

Example

In FORTRAN 77
It is often difficult to apply this rule in FORTRAN 77 (symbolic names limited to 6 characters). If
portability and/or security constraints allow, it is recommended that the features of the "extended"
FORTRAN 77 standard be used, in order to code names using 31 characters.

Id.IdentRegle

M=2;R=1;P=51;V=0

Any

Identifiers must be simple or created by concatenating several terms; the same
concatenation, use of determinants and upper and lowercase letters must be
common to all identifiers used in the project.

Description

Rules for naming identifiers are defined at the beginning of the project. They are customised for the
project and concern all activities. Identifiers must be differentiated from other words in the language (in
particular, reserved words).
In strict FORTRAN 77 (symbolic names limited to 6 characters), rules may be defined as explicitly as
possible while being compact.

Justification

Enhances readability.

Example

In ADA
1. The different words that make up an identifier are separated by an underscore

A_TELEMETRY_BLOCK, THE TELECOMMAND_BATTERY, etc.
2. Global variables are in uppercase letters, local variables are in lowercase and their names represent
what they identify.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 22

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id.NomDonnee

M=3;R=0;P=43;V=0

Any

The name of a datum must be a common name taken from everyday language;
the plural form must be used if the datum is a set or group.

Description

Not Applicable

Justification

Enhances readability.

Example

In C++
TheStarTracker
TheResults
TheDaysOfTheWeek

Id.VarSignif

M=3;R=1;P=26;V=0

Any

The name of a variable must convey its meaning.

Description

The name of a variable must fully identify said variable. It must both express what the variable is and
identify the variable unambiguously. A naming rule should be adopted for variable identifiers and the
specifiers used. For example: an article or possessive adjective for a variable, a verb phrase to express a
true or false status for a Boolean. In addition, each variable name should have at least 3 characters, except
loop indexes.

Justification

Enhances source readability and the distinction between variable identifiers.

Example

In ADA:
THE_TM_STATUS: A_CORRECTIVE_CODE;

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 23

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id.VarType

M=2;R=1;P=41;V=1

Any

The name of a variable may also convey its type, nature or scope.

Description

This rule essentially concerns weak typing languages or those for which static control is not strict.

Justification

For these languages, this rule improves code quality.

Example

In PVWAWE
- prefix local COMMONs to a module using CL_
- prefix COMMONs shared with other modules using CG_
- prefix the name of constants using CST_
- prefix structure types using TS_

In IDL:
Variable are named according to the rule: Scope_Type_Desc.

"Scope" represents the scope of the variable:
Global variable: use "g_"
Local variable: use "l_"
Variable belonging to a global common block: use "C G_"
Variable belonging to a local common block: use "CL _"
Member data of an object: use "m_"
"Type" represents the type of variable:
BYTE type: use "b"
INTEGER type: use "n"
Unsigned LONG type: use "ul"
Signed LONG type: use "l"
FLOATING type: use "f"
DOUBLE type: use "d"
COMPLEX type: use "c"
STRING type: use "s"
OBJECT type: use "o"
POINTER type: use "p"
STRUCTURE type: use "st"
"Desc" is the description of the variable.

Id.ConstSignif

M=3;R=1;P=27;V=0

Any

The name of a constant must convey its meaning and not its value.

Description

The name of each constant must follow the naming rules defined for the project, except when being
reused. In particular, these rules must allow the user to readily distinguish between constants and
variables. The names of constants should be written in UPPERCASE letters, and each name should
represent what it is identifying. This rule also applies to constants defined in enumerated types and in
macros in the C and C++ languages.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 24

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

Enhances readability.

Example

In ADA:
SIZE_OF_BUFFER: constant := 100; -- rather than HUNDRED;

Id.ClasseType

M=3;R=0;P=40;V=0

Any

Though not dictated by the language, the name of a type or class must be a
general term that identifies a group or category of data.

Description

Not Applicable

Justification

Enhances source readability and the distinction between type identifiers.

Example

In ADA
type A_CORRECTIVE_CODE is array (1 .. NB_OF_BITS) o f BOOLEAN;

In C
typedef struct
{
 int positionX;
 int positionY;
} tPosition;

Id.Pointeur

M=3;R=3;P=4;V=0

Any

If the language supports pointer or reference concepts, the name of a pointer or
reference must convey the semantics of the object it identifies (pointed or
referenced object).

Description

Not Applicable

Justification

Enhances readability and the distinction between pointer identifiers.

Example

In ADA:
type A_LINK_PTR is access A_LINK ;
PTR_CURRENT : A_LINK_PTR ;

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 25

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id.Procedure

M=3;R=1;P=80;V=0

Any

Procedure names must be infinitive verbs or verb groups that indicate the action
to be completed.

Description

The verbs must be active verbs. This rule also concerns macros in the C and C++ languages. When data is
masked, the write-access methods will have a standard prefix.

Justification

Enhances readability.

Example

In C++:
Definition of a Complex type and the access methods to the real
and imaginary parts of the complex number:

class Complex {
 …
 {}
public: // Access
 int virtual obtainRealPart(void)
 // Real part of complex number
 {
 return realPart_;
 }

 int virtual obtainImaginaryPart(void)
 // Imaginary part of complex number
 {
 return imaginaryPart_;
 }
…
};

Id.Tache

M=3;R=2;P=19;V=0

Any

Task names must be composed using procedures and events associated with and
used to trigger or sequence the task.

Description

Associated procedures are operations called by the task: when the task is very functionally consistent,
only one operation is called by this task.

Justification

Enhances readability.

Example

In C:
void GetStarAngle () is the procedure called cyclically each second to acquire the angle with a
given star; the associated task will be called:

 GetStarAngle_1s

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 26

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

In ADA:
 task THE_BUFFER is
 entry TAKE (THE_ELEMENT: out AN_ELEMENT);
 end THE_BUFFER;

Id.Fonction

M=3;R=1;P=29;V=0

Any

Functions must be named using a noun that represents the value supplied by this
function. For a function that returns a Boolean value, a verb phrase should be
used to express a true or false status.

Description

This rule also concerns macros in the C and C++ languages. When data is masked, the read-access
methods will have a standard prefix.

Justification

Enhances readability.

Example

In ADA:
 function SQUARE_ROOT (OF: in A_REAL) return A_REAL ;
 function ALREADY_EXISTS (THE_PATH: in A_PATH) ret urn BOOLEAN;

Id.NomParFormel

M=3;R=1;P=80;V=0

Any

The name of a formal parameter must convey the relationship between the
parameter and the operation concerned.

Description

Not applicable

Justification

Enhances readability. Facilitated reading must take precedent over facilitated writing.
A more explicit semantic form is obtained as a result.

Example

In ADA
procedure CREATE (WITH_THE_STRING : in STRING;
 THE_WORD : out A_WORD);

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 27

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.4 DATA

Don.Declaration

M=3;R=3;P=1;V=2

Any

All data used must be explicitly declared.

Description

This rules concerns permissive languages that allow declarations to be omitted.
Declaration instructions will be specified (public, private, static, etc.).
In addition, all data declared must be used.

Justification

Improves maintainability and reliability.

Example

In FORTRAN 90
The instruction IMPLICIT NONE is mandatory.

In C++
Declaration instructions will not be used by default.

Don.Separee

M=2;R=1;P=45;V=2

Any

Each piece of data must have a separate declaration.

Description

One line will be used for each declaration.

Justification

Each declaration will be able to be commented as a result.

Example

In C or C++
Incorrect

float sBeg sEnd, sAverage; // Speed calculation v ariables.
Correct

float sBeg; // Speed at the beginning of acc eleration.
float sEnd; // Speed at end of acceleration.
float sAverage; // Average speed.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 28

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.Typage

M=3;R=3;P=2 ;V=2

Any

Data must be systematically and explicitly typed.

Description

Types must correspond to the data variation domains. The most "limited" definition domains will be used,
in accordance with data semantics.
All allocation directives must be explicitly specified.

Justification

An absence of explicit typing may indicate a programming anomaly.
Assigning a type by default may create errors and portability issues.

Example

In ADA
 integer NBNODE:= 10
 type(NODE), dimension(:), allocatable :: TABNODE
 integer, dimension(:,:), allocatable, target :: C ONNECTIVITY

In FORTRAN 90
Use the allocated declaration form.

Don.TypeAnonyme

M=3;R=2;P=32;V=1

Any

Anonymous types must not be used.

Description

An anonymous type is a type that is implicitly declared through data declaration, but that is not declared
as such as a type.
Data declarations made using semantically-equivalent anonymous types are not allowed.
In C, compound literals, whose scope in a function is limited to the enclosed instruction block, and tags
should be avoided.

Justification

Eliminates type incompatibility problems.
Enhances scalability and type reuse.

Example

In ADA
Replace:

 THE_CHESSBOARD: array (1 .. 8, 1 .. 8) of A_SQUARE;
 THE_OTHER_CHESSBOARD: array (1 .. 8, 1 .. 8) of A_SQUARE;

by:
 AN_CHESSBOARD is array (1 .. 8, 1 .. 8) of A_SQUARE;
 THE_CHESSBOARD: AN_CHESSBOARD;
 THE_OTHER_CHESSBOARD: AN_CHESSBOARD;

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 29

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.Localite

M=3;R=1;P=30;V=1

Any

Local data declarations are preferred over more global declarations: data that is
local to a module are preferable to global data, formal parameters are preferable
to global data, local data for an operation are preferred over module-level data,
and local data for an instruction block are preferable to local data for an
operation.

Description

This rule is very general and must be applied according to context and language.

Justification

Readability is enhanced if variables are limited in scope (said variables are not relevant outside of their
scope).
The use of more global variables is always more costly in terms of memory use and access time.
The use of more global variables renders the code less generic and more difficult to maintain or reuse.
Use of more global variables makes the code less reliable.
Where appropriate, the compiler may avoid useless allocations or code: local data that is not assigned is
not allocated; local data that is not reused is not calculated (the code that assigns it is not generated). This
is particularly effective when conditional compilation is used.
This is to limit the scope of the variables as much as possible.

Example

In FORTRAN or IDL
The COMMON mechanism should be avoided in order to use parameters

In SHELL or PERL
Environment variables should be avoided

In SHELL
 Local variables for a function should be defined using a typeset or a local attribute

In C++ or JAVA
Static data should be avoided

In C++
An example of an itemised declaration:

void f4 (int &x, int &y, int z []) {

 // PreProcessing
 f (x);
 g (y);

 // Development of local 1
 int local1 = x+y ;

}

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 30

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.Invariant

M=2;R=1;P=52;V=1

Any

Constants must be defined for entities whose value is invariant.

Description

If an invariant is used only once (for a given semantic), the definition of a constant may be debated.

Justification

This rule allows invariants to be guaranteed, thereby enhancing reliability. In addition, code is not
impacted if the value of the constant is modified (location of the modification and uniqueness). This
facilitates adaptability and scalability.

Example

In ADA
package PACKAGE_EXAMPLE is
 MAX_LINE_LENGTH: constant := 255 ;
 type A_LINE_LENGTH is range 0.. MAX_LINE_LENGTH;
 MY_CARD_LENGTH: constant A_LINE_LENGTH:= 80 ;
 ...

Don.Enumeration

M=2;R=2;P=36;V=1

Any

The use of constants or symbols must be preferred (enumerative, if the language
allows) over the use of whole numerical data. The use of whole numerical data
must be essentially limited to simple calculation or counting.

Description

All constants (including table dimensions) must be named using symbols. Literal constants are prohibited,
except in special cases such as increments of 1 and -1. Constants must be typed, if the language allows. If
the language proposes several mechanisms for implementing constants, the mechanism that is best
adapted to the context should be used.

Justification

This technique ensures code consistency, scalability and reusability.

Example

In ADA
Replace:

 type AN_INSTRUMENT is range 1.. 4;
 -- 1 corresponds to CAMERA
 -- 2 corresponds to ALTIMETER
 -- 3 corresponds to INTERFEROMETER
 -- 4 corresponds to LASER

by:
 type AN_INSTRUMENT is (CAMERA, ALTIMETER, INTERFER OMETER, LASER);

In C and C++
The #define instruction does not exit in the C language, but is rather a command for its pre-
processor cpp: #define allows a literal constant to be replaced by its value in the source code. The

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 31

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

compiler works on a post-processing version of the source and therefore does not know the original
literal constant. Declaring enumerations increases the possibilities for control.
Incorrect example:

#define WHITE 0
#define BLACK 1
#define RED 2
#define GREEN 3
#define BLUE 4
int aColour;
aColour = RED; // correct for compilation

Correct example:
typedef enum { white, black } tColour1 ;
typedef enum { white, black, red, green, blue } tCo lour2 ;
tColour1 aColour = red; // justified refusal for co mpilation

Don.Structure

M=3;R=2;P=18;V=0

Any

When a conceptual object must be implemented as several data, this data must be
grouped in a structuring entity (class, structure, record, type) according to the
possibilities provided by the language.

Description

Not Applicable

Justification

This ensures enhanced consistency between units of code.

Example

Not Applicable

Don.Homonymie

M=2;R=1;P=46;V=1

Any

The use of homonyms must be avoided except in cases of overload or explicit
redefinition.

Description

A variable that is local to a sub-program must not have the same name as a compilation unit global
variable or an external variable.

Justification

Enhances readability.
Avoids visibility conflicts involving rules that may be complex.

Example

In C
Using naming rules makes it possible to distinguish between local variables and static variables,
thereby avoiding this type of error, which is often difficult to detect.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 32

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.Initialisation

M=2;R=3;P=11;V=2

Any

Variables must be initialised before being used for the first time.

Description

All variables must be initialised, either when declared, or before being used for the first time. If possible,
variables should be initialised when declared: this concerns, in particular, all simple variables (integer,
float, char, etc.), pointers and references, local variables and environment variables used by the program
and the scripts.
Initialisation must be performed at declaration, if the variable can be initialised with a significant value.
Note that some languages may impose or verify variable initialisation, specifically for local variables.

Justification

Avoids side effects and potential portability problems. If the variable is not initialised it amounts to using
the memory initialisation performed by the operating system, which may be different from one computer
to another.

Example

In FORTRAN
When COMMON is used to pass variables from one service to another, it must always be initialised
by the caller.

In C
const int MAX_STRING = 80;
int Number_aircraft = 0;
char Firstname[MAX_STRING]="";
const int SIZE = 10;
int Tab[SIZE]={1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10};

Data.PointeurNonAff

M=2;R=3;P=13;V=1

Any

If the language supports the pointer concept, when a pointer is not associated with
a specific object at declaration, a comment must specify the object that will be
associated with it and, if the language allows, initialise it to null.

Description

The purpose of this rule is to document the use of pointers and references with a complicated dynamic.

Justification

One of the most frequent causes for error when using pointers or references is the use of a null reference.

Example

In JAVA
Point P1 ; // First end of segment

// Will be assigned as soon as the segment is creat ed
Point P2 ; // Second end of segment

// Will be assigned as soon as the segment is creat ed

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 33

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Segment S = new Segment () ;
…
P1=S.First () ;
P2=S.Last () ;

Don.LocalUnique

M=2;R=0;P=80;V=0

Any

Each local datum must have a unique use.

Description

The definition of general data reused at various points in the code should be avoided.

Justification

Code is more consistent.
This reduces the risk of side effects due to previous initialisation of the variable.
Increasing local data does not adversely impact performance: recent compilers know how to effectively
manage associated resources.

Example

Not Applicable

Don.Utilisee

M=2;R=0;P=81;V=2

Any

All data that is defined must be used; a datum that is no longer used must be
deleted.

Description

Local data created for a specific need should be deleted when this need ceases to exist. This facilitated by
respecting rule Don.TypeAnonyme .

Justification

A variable that has been declared but not used corresponds to useless code that adversely impacts
readability and pollutes the program

Example

Not Applicable

Don.TablePrincipe

M=2;R=2;P=37;V=0

Any

The processing principal (line x column or column x line) for double entry tables
must be defined.

Description

The principles for using double entry tables must be defined; how they should be declared, and which
indexes correspond to lines and columns.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 34

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

Without a specific rule, confusion may arise between two developers: one sees the double entry table as it
is and the other sees it as being transposed.
In most languages, the addressing mode for table elements skews performance according to whether the
table is browsed line-by-line or column-by-column

Example

In FORTRAN
Process tables by column rather than by line
Use (processing a column in the innermost loop):

 DO J = 1,N
 DO I = 1,N
 A(I,J) = B(I,J) * 5.0
 END DO
 END DO

rather than (processing a line in the innermost loop):
 DO I = 1,N
 DO J = 1,N
 A(I,J) = B(I,J) * 5.0
 END DO
 END DO

In PVWAWE
Loop indexes in a table beginning with columns and then lines.

In IDL
For multi-dimensional tables, loop indexes by browsing through the first indexes in the innermost
loops

Don.TableOper

M=2;R=2;P=38;V=1

Any

Global operations for tables (initialisation, copy, duplication, comparison) must
be performed using standard primitives provided by the language, when they
exist.

Description

Not Applicable

Justification

Code is more readable.
Code is more efficient.

Example

In C and C++
The functions memset, memcpy etc. should be used

In IDL:
The ARRAY_EQUAL function allows for quick comparison of the contents of 2 tables, without
having to use FOR loops or WHERE instructions.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 35

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.ChaineOper

M=2;R=2;P=39;V=1

Any

Global operations for character strings (initialisation, copy, duplication,
comparison, search, modification) must be performed using standard primitives
provided by the language, when they exist.

Description

Not Applicable

Justification

Code is more readable.
Code is more efficient.

Example

In FORTRAN 77:
LEN and INDEX functions are used.

In C:
<string.h> interface functions (strcpy, strcmp, strcat, etc.) are used.

In C++:
The String type from STL will be used.

In PERL:
Comparing character strings requires the use of dedicated alphabetical operators (eq, lt, gt, le, ge)
rather than standard numerical operators (==, <, >, <=, >=). Using numerical comparison operators
on character strings does not cause a syntax error (only a warning), but will not return a correct
value.

Don.AllocDynbord

M=0;R=3;P=30;V=1

On-board

Dynamic memory allocation is prohibited.

Description

All instructions that lead to dynamic memory allocation or deallocation are prohibited.

Justification

Allocation and subsequent deallocation may lead to significant memory fragmentation. To avoid CPU
load problems, it is clear that bringing a process on-board to continuously defragment the memory is not
acceptable.

Example:

In C:
Use of dynamic memory allocation mechanisms that use malloc/free (standard library) is prohibited
in on-board real-time applications.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 36

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.AllocDynSol

M=0;R=2;P=61;V=0

Ground

If the language supports the concept, dynamic memory allocation must be used
sparingly, and with caution.

Description

The project may choose to prohibit dynamic memory allocation, or to limit it to certain compilation units
in order to manage memory usage.

Justification

Dynamic allocation requires an analysis of the application's dynamic, and may lead to memory
fragmentation problems that may adversely affect performance

Example

Not Applicable

Don.AllocEchec

M=0;R=2;P=62;V=1

Ground

If the language supports the concept of dynamic allocation, the potential failure
of a memory allocation request must be systematically provided for.

Description

A dynamic memory allocation request may fail as a result of insufficient available memory.
In all cases, a process must exist in the event of failure.

Justification

A memory allocation error is a serious error.
It is generally very difficult to trace the cause (the failure of the allocation request) from one of the
effects.

Example

In C++
The following possibilities exist to prevent the risk of allocation failure:
Define a global error processing function, that is positioned as a function called implicitly when new
fails, due to the error management primitive "set_new_handler".
Redefine the new operator for a given class: this technique is more complicated, but creates
processing adapted for each class.
Use the exception of the standard library "bad_alloc ".
Test the return value of a call to new and provide for an ad hoc process if a null value is returned,
which corresponds to an allocation error. In this case, the new operator should be used with the
(nothrow) instruction to avoid throwing an exception.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 37

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Don.AllocLiberation

M=1;R=1;P=53;V=0

Ground

All allocated memory must be freed at the same conceptual level.

Description

All memory area allocation involves explicit deallocation as soon as possible and at the same conceptual
level: operation, service, module, class. It should be noted that this rule is not applicable for languages
such as JAVA, which automatically free memory.

Justification

Systematic deallocation saves memory resources.
It is easiest to free memory at the conceptual level at which this memory was allocated.

Example

In C
If a module offers a memory allocation function, it should also offer a function to free memory.

In C++
If constructors allocate memory, a destructor frees memory.

Donc.AllocErreur

M=0;R=2;P=63;V=0

Ground

An error that occurs during processing must not cause memory to not be freed.

Description

A code sequence that leads to an exception risks skipping the code that frees resources.

Justification

Allocated resources must be freed, regardless of code sequence.

Example

In C++
An example of a function interrupted by an exception that leads to resources not being freed

void Exception1 (void) {
 try {
 tA * pA ;

 // Local allocation
 pA = new tA (0);

 // Processing interrupted by an exception
 // ...

 // Resource freed
 delete pA ;
 }
 catch (MyException e) {
 // ... Processing exception
 }

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 38

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

}
An example of a function throwing an exception without freeing resources

void Exception2 (void) throw (MyException) {
 tA * pA ;
 // Local allocation
 pA = new tA (0);
 // Processing throwing an exception
 if (true) throw MyException (1);
 // Resource freed
 delete pA ;
}

7.5. PROCESSING

Tr.TestEgalite

M=0;R=3;P=45;V=1

Any

Use of the equality or difference test must be replaced by inequality where
possible.

Description

Equality or difference tests are difficult to manage when browsing intervals.

Justification

Enhances robustness.

Example

In C:
Replace:

for (int i=0 ; i != MAX ; i++)
by:

for (int i=0 ; i < MAX ; i++)

Tr.ComparaisonStrict

M=0;R=3;P=46;V=1

Any

Strict comparison (equality, difference) between floating numbers (real, complex)
must be replaced by inequality.

Description

Equality between reals will never be tested using an equality operator, but rather by framing their
difference.

Justification

The strict equality of two real-type operands does not make sense.

Example

In ADA:
Replace:

 if MY_REAL = YOUR_REAL then
by:

 if (abs(MY_REAL - YOUR_REAL) < EPSILON) then

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 39

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

where EPSILON represents machine accuracy.

Tr.ModifConst

M=3;R=3;P=3;V=2

Any

The value of a constant must not be modified.

Description

This rule concerns languages for which the concept of "constant" is not defined.
In C and C++, casting mechanisms that might modify the value of a constant will be avoided.

Justification

Constants represent invariants that must be respected.

Example

In C or C++
Avoid the following code:

const double pi=3.1415926 ;
const double * ptr1 = & pi ;
double * ptr2 = (double *) (ptr1) ;
*ptr2 = 3 ;

Tr.ControleRacc

M=2;R=2;P=35;V=1

Any

If the language supports the concept, shortcut forms of control must be used
whenever appropriate.

Description

Shortcut control forms are specific to the languages and correspond to common specific cases of control
forms: iterative forms, decisional forms etc.

Justification

Enhances readability.
Speeds code execution.

Example

In C:
Use the instruction for rather than while , when possible.
Use a switch rather than a series of if – else if if the conditions concern the enumeration of the
values in a whole expression.

In ADA:
Prefer:

 if Y /= 0 and then (X / Y) = 10 then . -- OK
over:

 if Y /= 0 and (X / Y) = 10 then ... -- CONSTRAINT _ERROR
POSSIBLE

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 40

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Tr.Choix

M=2;R=0;P=70;V=1

Any

A choice instruction must be used rather than a simple conditional instruction
when there is more than one alternative.

Description

Not Applicable

Justification

For a multiple choice, the compiler builds a table of branching addresses for each case (which is possible
if the values to be tested are numerically consecutive), so that the access time to each case does not vary.
Enhances code readability and self-description.

Example

In ADA:
type A_RESPONSE is (YES, NO, MAYBE) ;
THE_RESPONSE_OF_THE_OPERATOR := OPERATOR_RESPONSE (OF_THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF_THE_OPERATOR is
 when YES => PROCESS;
 when NO => DO_NOT_PROCESS;
 when MAYBE => DECIDE;
end case;

In FORTRAN 77:
Avoid using calculated goto, which is less readable, and use nested if elseif

In C and C++:
When there is more than one alternative possible, use a switch/case instruction rather than an
if/else if/else instruction

Tr.OrdreChoix

M=3;R=2;P=17;V=1

Any

When using a choice instruction, all possible cases must be provided, preferably
explicitly and in the "logical" order of the cases.

Description

This means, among other things, that processing by default cannot be used.

Justification

Improves software maintainability and reliability.

Example

In ADA:
 Prefer:

type A_RESPONSE is (YES, NO, MAYBE);
THE_RESPONSE_OF_THE_OPERATOR := OPERATOR_RESPONSE (OF_THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF_THE_OPERATOR is
 when MAYBE => DECIDE;
 when YES => PROCESS;
 when NO => DO_NOT_PROCESS;
end case;

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 41

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 over:
type A_RESPONSE is (YES, NO, MAYBE);
THE_RESPONSE_OF_THE_OPERATOR := OPERATOR_RESPONSE (OF_THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF_THE_OPERATOR is
 when YES => PROCESS;
 when OTHERS => DO_NOT_PROCESS;
end case;

Tr.Goto

M=3;R=3;P=6;V=2

Any

The unconditional branching instruction (goto) must only be used in very limited
and specific cases.

Description

Goto must be used only for error processing. If the language supports exception processing, as does ADA,
JAVA or C++, the use of goto is prohibited.
It is prohibited to perform backward branching, or in a structured instruction such as a loop.

Justification

The instruction goto often leads to a destructured program, which increases complexity and the risk for
errors.

Example

In C
Use of goto is tolerated for error processing:

while(Condition_1)
{
 Processing_1;
 if (Condition_2)
 {
 goto Error
 }
 Processing_2;
 if (Condition_3)
 {
 goto Error
 }
 ...
}
goto End;

Error: Processing_Error;

End: ...

However, the long jump (set jump, long jump) is prohibited.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 42

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Tr.BoucleSortie

M=3;R=2;P=16;V=2

Any

A loop must feature a unique nominal exit.

Description

A well-structured loop algorithm must not require several possible exits. It is the condition that must
potentially test the different possibilities for interrupting the loop.
Use of the unconditional exit instruction can be tolerated if respecting the rule leads to far more complex
loop programming.

Justification

A large number of loop exits destructures the program and adversely impacts comprehension.
The unconditional exit instruction in a loop destructures the program and increases its complexity.

Example

In C
// incorrect

Index = 0;
while (Index < MAX)
{
 if (Letter[Index] == KEY)
 {
 break;
 }
 Index ++;
 Processing;
}

// correct
Index = 0;
while (Index < MAX) && (Letter[index] != KEY))
{
 Index ++;
 // processing
} // end of loop for variable

Tr.ModifCondSortie

M=3;R=3;P=8;V=1

Any

The loop exit condition must not be modified in loop processing.

Description

The loop exit test must compare the loop parameter value with a value known at loop entry and
independent of loop body processing.

Justification

Enhances readability.

Example

In C
// incorrect

for (I = 0; I == Max ; I++)

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 43

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

{
 ...
 Max = Func_1();
 ...
}

Tr.ModifCompteur

M=3;R=3;P=7;V=2

Any

The loop counter must not be modified in loop processing.

Description

The loop parameter value must not be modified by loop body processing, unless to provide iterative
instructions that do not implicitly modify the loop counter. In the latter case, the loop counter will only be
modified once, at the end of the loop body.

Justification

Enhances readability.

Example

In C
// Incorrect
for (I = 0; I <= max; I++)
{
 ...
 I = Func_1();
 ...
}
// Correct
while (I <= max)
{
 ...

I++ ;
}

Tr.RecursifSol

M=0;R=2;P=64;V=1

Ground

Recursive operations must not be used unless they are conceptually simpler than
an equivalent iterative operation.

Description

All recursive problems have iterative solutions. However, certain types of data are particularly well-suited
to recursive algorithms. In this case, this type of solution should be preferred. However, before applying
a recursive solution, the mechanisms for exiting recursivity should be defined from the design phase. For
example, the maximum call depth attained during execution can be assessed to determine whether it is
permissible. If this is the case, this maximum value can be used as a type limit for a depth control
parameter in order to correctly process the exception raised by a test in the event this value is exceeded.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 44

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

The use of recursivity is more difficult to test and to understand: its use must be limited for this reason.

Example

Not Applicable

Tr.RecursifBord

M=0;R=3;P=64;V=2

On-board

Recursivity is prohibited.

Description

This rule concerns direct recursivity, as well as indirect or cross recursivity.

Justification

Recursivity may cause non-deterministic behaviour that may be dangerous when the depth (i.e. the
number of successive calls) is not known from the outset. It is therefore difficult to assess the size of the
execution stack required to execute a recursive algorithm.

Example

Not Applicable

Tr.FonctionSortie

M=3;R=2;P=15;V=2

Any

A function must only contain one exit instruction.

Description

Functions are exited using a return instruction that must be accompanied by a significant nominal value.
Multiple exit points are tolerated for error processing (return instruction associated with the return of an
error code value).

Justification

This rule improves the maintainability of the sub-program in the event that processing must be added
before the exit instruction.
One single nominal exit and one error exit reduce the complexity of the sub-program and the associated
test effort required.

Example

In C:
// function returning an integer
int Function_1 (void)
{
 int Res ;
 if feof (F_Desc)
 {
 Res = 0;
 }
 else
 {

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 45

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 Res = 1;
 }
 return (Res);
}

Tr.ProgDefensive

M=1;R=3;P=20;V=1

Any

Defensive programming, which involves the use of pre-conditions and post-
conditions, should be preferred.

Description

Defensive programming involves adding assertions in the code in order to verify invariants: as inputs,
these are pre-conditions; as outputs, these are post-conditions. If an assertion is not verified, an error is
reported or an exception is flagged.
To avoid adversely impacting performance, assertions may be made "optional" using conditional
compilation techniques.

Justification

Function use constraints are formally specified (pre-condition). Post-conditions provide the user with
guarantees regarding processing performed.
Application fine tuning is facilitated.

Example

In SHELL
Programs must verify the validity of all of their arguments before beginning processing and check all
user entries (with the keyboard)

In C++
class TableUnsigned{
 // Table of positive integers.
public: // Constructor
 Table(unsigned min, unsigned max);
 // Creation of a table of min and max. limits
public: // Access
 int& operator [](int index)
 // Read-write access
 {
 precondition(index > min() && index < max());
 // Pre-condition
 int& return = accessReadWrite(index);
 // Call from delegation function.
 post-condition(return >= 0);
 // Post-condition
 return return;
 }
private: // operator delegation function [].
 int& accessReadWrite(int index);
}

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 46

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Tr.Residus

M=2;R=0;P=71;V=2

Any

No programming residue must exist as comments in the code: an instruction that
is no longer used must be deleted.

Description

Residues are often portions of dead code that appear after the code has been modified. However,
unattainable code may exist due to robustness issues: this code must be commented.

Justification

Dead code weighs down code and negatively impacts readability.
Dead code may cause useless test efforts to be performed.

Example

In FORTRAN
All labels must be used. Labels that are no longer used must be deleted.

Tr.Parenthèses

M=1;R=2;P=42;V=2

Any

Expressions must be systematically enclosed in parentheses.

Description

Syntactically redundant parentheses are added to enhance readability.

Justification

Enhances code readability and facilitates portability.

Example

In C
Replace:

totalPressure = forceA / SurfaceA + forceB / Surfac eB ;
With:

totalPressure = (forceA / SurfaceA) + (forceB / Sur faceB) ;

Tr.CalculStatique

M=0;R=1;P=100;V=1

Any

In compiled languages, it is better to perform calculations on static expressions at
compilation, with maximum accuracy, rather than dynamically calculated
expressions.

Description

This point is even more important when the target machine is less efficient than the machine used for
development.

Justification

Portability, performance

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 47

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example

In ADA:
In this first case, all data are constants: the values may therefore be calculated once and for all, at
compilation, and with the level of accuracy offered by the development machine.

PI : constant := 3.1415926536;
PI_OVER_2 : constant := PI/2.0 ;
OF_DEGREE_TO_RADIAN: constant := PI_OVER_2 / 90.0 ;
OF_RADIAN_TO_DEGREE: constant := 1.0 / OF_DEGREE_TO _RADIAN;

In the second case, all data are variable: consequently, the compiler generates an initialisation code,
which will be executed on the machine with the accuracy of the latter.

PI : real := 3.1415926536;
PI_OVER_2 : real := PI/2.0 ;
OF_DEGREE_TO_RADIAN: real := PI_OVER_2 / 90.0 ;
OF_RADIAN_TO_DEGREE: real := 1.0 / OF_DEGREE_TO_RAD IAN;

Tr.Booleen

M=2;R=0;P=72;V=1

Any

A complex conditional expression must be replaced by a unique Boolean that
expresses a state.

Description

Not applicable.

Justification

Enhances code comprehension and readability.

Example

In C
Replace:

if (forceA >= Limit1 && abs(forceB) < Limit2) …
With:

bool constraintA = forceA >= Limit1 ;
bool constraintB = abs(forceB) < Limit2 ;
bool conditionAB = constraintA && constraintB ;
if (conditionAB) …

Tr.DoubleNeg

M=2;R=1;P=47;V=2

Any

Double negatives must be avoided in Boolean expressions.

Description

Not applicable.

Justification

Double negatives make code difficult to understand.

Example

In ADA

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 48

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Prefer:
if EXISTS then -- COMPREHENSIBLE

over:
if not DOES_NOT_EXIST then -- HEAVY

Tr.MelangeType

M=3;R=3;P=9;V=2

Any

Different types of data should not be mixed in the same expression.

Description

The type of an arithmetic expression is generally determined by the compiler according to the type of
operands and rules, which may sometimes elude the developer.
The following are exceptions to this rule:
• exponentiation by an integer (which is not an exception, strictly speaking, because coercion rules do
not require conversion in this case),
• multiplication by a literal scalar integer of small value.

Justification

Enhances readability.
Allows expression assessment to be managed

Example

In FORTRAN
This example shows how mixing different types of data can produce assessment that is less accurate
than initially desired

 REAL OPER1,OPER2
 DOUBLE ACCURACY RESUL,OPER3

 RESUL = OPER1 + OPER2 + OPER3

In FORTRAN 77, the previous instruction is equivalent to the following sequence:
 REAL TIME
 TIME = OPER1 + OPER2
 RESUL = DBLE(TIME) + OPER3

For maximum accuracy, the following should have been used:

 RESUL = DBLE(OPER1) + DBLE(OPER2) + OPER3

Tr.ComparConst

M=1;R=1;P=59;V=1

Any

In a comparison with a constant, the variable must always be to the left of the
comparison operator.

Description

The expression comparing a variable to a constant may be written in two different ways, depending on
whether the variable is compared to the constant, or vice versa. The code should always be written such
as to compare the variable to the constant.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 49

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

This type of comparison improves program readability.

Example

In C or C++
// incorrect
#define MAX_PARAM
if (MAX_PARAM >= Nb_Param)
{
 // nominal processing
}
// correct
#define MAX_PARAM
if (Nb_Param <= MAX_PARAM)
{
 // nominal processing
}

Tr.OrdreParFormel

M=1;R=0;P=116;V=1

Any

The declaration order for formal parameters must be standardised.

Description

The order will be defined for the project. Passing modes will not be used by default (for example, "in" in
ADA).

Justification

Readability is improved by clarifying semantics.

Example

In ADA
Parameters are cited according to the order (in then in out, followed by out).

In FORTRAN
The parameter list must use the following order:
- name of sub-program,
- input,
- input/output,
- outputs,
- return code

Tr.ParamOptionnel

M=1;R=0;P=115;V=2

Any

Optional parameters must not be used when defining an operation.

Description

Optional parameters will not be used when they are possible; some evolved languages, such as JAVA,
have already abandoned the use of this mechanism, which is considered to be too risky.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 50

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

The use of optional parameters masks real interfaces for operations and may cause them to exhibit
surprising behaviour.

Example

In C++
Replace:

void Calculation (double x, double epsilon=0.00001) { …
With:

void Calculation (double x) { Calcul (x, 0.00001) ; }
void Calculation (double x, double epsilon) { …

Tr.ModifParSortie

M=2;R=1;P=48;V=2

Any

An operation must not modify input parameters.

Description

This is particularly true for non-scalar input elements (such as tables, structures and instances) that are
passed by address or reference.

Justification

Declaring an input parameter as constant contributes to application reliability because this constant is
verified by the compiler. This also serves as a formal comment for function clients, who are ensured that
objects passed to parameters will not be modified.

Example

In C or C++
An input argument passed by address will be obligatorily protected by the qualifier const

int Seek_Ind (const int * Tab, int Dim, int Val)
{
 …
}

Tr.ModifVarGlobal

M=2;R=3;P=12;V=2

Any

A function must not modify the value of a global variable or involve output
parameters.

Description

A sub-program with only one output parameter must be a function unless this parameter is simply a
processing sub-product (in which case, a procedure will be used).

Justification

Enhances readability by better highlighting the object of the triggered action.
Eliminates side effects.
Improves reliability and portability.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 51

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example

In ADA
Replace:

 EXTRAPOLATE (THE_ORBIT => THE_CURRENT_ORBIT,
 ON_THE_DATE => THE_CURRENT_DATE) ;

With:
 THE_CURRENT_ORBIT := EXTRAPOLATION (OF => THE_CUR RENT_ORBIT,
 ON_THE_DATE => THE_CURRENT_DATE);

Tr.ParSortie

M=;R=;P=25;V=1

Any

All output parameters for a procedure must have received a value before the first
processing condition, by initialisation by default, if necessary. The same is true
for variables used to return the value of a function.

Description

However, it is more important for the sub-program to accomplish what it must accomplish (or raise an
exception) than to give values.
This rule does not apply if one of the parameters is a return code; certain other out parameters may not be
initialised if they are not significant (this style of programming must generally be avoided, but this is not
always possible, especially when interfacing with other languages).

Justification

Avoids random results.

Example

In C:
Correct example:

void setAlpha (int * alpha) {
 *alpha=0 ; // value by default
 if (…) ///
}

Incorrect example:
void setAlpha (int * alpha) {
 if (…) ///
}

7.6. ERROR MANAGEMENT

Err.Mecanisme

M=3;R=3;P=10;V=0

Any

Error management must be performed using resources implemented in the
language (exceptions or other). If the language offers several possible
mechanisms, the mechanism that best respects the other error management rules
should be selected. If the language does not offer specific error-management
mechanisms, a dedicated error management module must be created.

Description

This mechanism will be used for languages that support the exception mechanism. For the others, the
return code for functions or services will be used, and rules concerning this return value will be defined
and the use of these return values will be required for callers.

Justification

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 52

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

When the exception mechanism is available, it clearly and effectively processes errors that occur during
execution. Caller and callee roles will be well defined.

Example

In ADA
The failure management policy uses the ADA language's exception mechanism. The return code
technique associated with sub-programs, that which associates a validity marker to variables, and
that which centralises errors are all prohibited.

In IDL
The CATCH mechanism should be used rather than the ONERROR mechanism

In Java and C++
 Functional return must not be used for error management. The exception mechanism should be used.

In SHELL
A program that ends correctly must always explicitly return the value 0. A program must always
explicitly return an error code in the event of an incident. The project may define error families and
associated termination codes because the shell program may fail for various different reasons

Err.TraitementDiff

M=0;R=2;P=65;V=0

Any

Error processing must be differentiated according to fault.

Description

Failure processing is differentiated according to the type of failure. This corresponds to the project's
application logic and meets robustness targets. A distinction will be made between planned and
unplanned failures and cases in which a solution for resolving the failure is known and those in which it is
not. Failures are distinguished either by creating "families" of exceptions, or by coding error numbers.

Justification

Enhances reliability

Example

In C++ and JAVA
Exception levels will be defined using the heritage mechanism and by filtering errors using well-
organised catch blocks.

In C
An integer should be used to code errors with the following rules:

errno < 1024 => system error
1024 <= errno < 2048 => input output error applicat ion level
Etc.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 53

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Err.Impression

M=0;R=1;P=99;V=1

Any

The possibility of reporting an error message must be studied.

Description

An error message may be reported using a trace, print, creation of an error file, use of an error window or
console, or the use of a dedicated error peripheral

Justification

Facilitates fine tuning.

Example

In SHELL and PERL
Errors are recorded in a log file.

Err.Nom

M=0;R=1;P=95;V=0

Any

An error process or an exception must have a name that expresses the reason for
which the service requested may not be provided.

Description

This rule mainly concerns exception languages. For other languages, meaningful symbols may be
defined for each "error code".

Justification

Enhances readability.

Example

In ADA:
package THE_LISTS is
type A_LIST is limited private ;
 LIST_SATURATED: exception;
 -- Lifted when the list is saturated at creatio n or insertion.
end THE_LISTS;

In SHELL
Scripts will use the following abnormal end codes (the numerical value is indicated between
parentheses):

BAD_ARGS (1) Error in the number of arguments for a function
NO_FILE (2) File access error
UNKNOWN (3) All other errors.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 54

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Err.FinOperation

M=1;R=1;P=60;V=1

Any

Error processing must be localised at the end of the operation.

Description

In most cases, when an exception is flagged, the operation is stopped. Processing of all exceptions that
may be flagged must be performed at the end of the operation, rather than by nested blocks, each of which
manages its own exceptions.

Justification

This rule enhances code readability. The nominal algorithm is not polluted by error processing, and
processing that is common to several exceptions may be factorised at the end of the operation.

Example

Not Applicable

Err.Operation

M=1;R=3;P=21;V=0

Any

Error processing must be performed at the level of the operation that may process
this error.

Description

In exception languages, an exception must not be recovered by a function that does not have the resources
to process it.

Justification

Processing an error too early weighs down the code unnecessarily.
If processed too early, the programmer risks forgetting to propagate the error one level up, where it may
be processed.

Example

In C++ or JAVA
Incorrect example:

// method1 can send the exception MyException.
void method1() throws MyException {
 if (...) {
 throw new MyException();
 }
}
// method2 calls method1 but does not know how to p rocess
// MyException.
void method2() {
 try {
 method1();
 } catch (MyException e) {
 // Simple trace, no processing of the error .
 }
}

Correct example:
void method1() throws MyException {
 if (...) {

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 55

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 throw new MyException();
 }
}

// Declare that method2 can return the exception.
void method2() throws MyException {
 // If method1 tags the exception MyException
 // it is propagated to caller of method2.
 method1();
}

Err.IntegriteDonnee

M=1;R=3;P=22;V=0

Any

Error triggering must not modify data integrity.

Description

With OO languages, for objects with non-trivial construction, an exception thrown during modification of
an object can lead to non-integrity.

Justification

Lack of data integrity causes serious problems or unpredictable operation.

Example

In C++:
An example in which a failed allocation during an assignment operation destroys data integrity

class String {
private:
 char * string ;
public:

 String (const char *s) ;
 String (String & s) ;
 ~String () ;

 // Assignment operator
 String & operator= (const String & s) ;
};

String::String (const char * s) {
 int size = strlen (s) + 1 ;
 string = new char [size] ;
 strcpy (string,s);
}

String & String::operator= (const String & s) {
 if (this!=&s) {
 delete [] string ;
 int size = strlen (s.string) + 1 ;
 string = new char [size] ;
 // if the allocation fails,

// string points to an area that has just been
 // freed (and may therefore be reused later)
 strcpy (string,s.string);

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 56

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 }
 return *this ;
}

To avoid this problem, each call to new must be placed in a try catch block; in the event of an error,
string must be assigned 0; the string will then be verified to be different from 0 before each
legitimate operation, including destruction.

Err.ToutesTraitées

M=0;R=3;P=42;V=0

Any

All errors must be processed. No errors must be masked or ignored: error
triggering must never abruptly interrupt the program.

Description

To enhance application robustness, the application must receive all signals (or interruptions) and define a
case-by-case processing strategy according to the need and nature of the signal.

Justification

An unprocessed exception leads to the program being abruptly stopped, which is never desirable.

Example

In general: the case of numeric exceptions
In the specific case of the arithmetic processor, all numeric exceptions must be examined. Certain
exceptions may be masked (generally rounding and underflow exceptions) with a justification.
Unmasked exceptions must be associated with dedicated software processing.

In C++
A non-processed exception is returned to the highest level, and causes untreated exception handlers
to be triggered. Two handlers exist: "terminate", which mandatorily terminates the ongoing
execution, and "unexpected" which may allow the current exception (not processed) to be rerouted
to a processed exception. These handlers may be redefined using customised functions: this may be
useful in attaining ultimate robustness or to process very general exceptions at a high level. It must
not replace local processing of exceptions. The precise functioning and the connections between the
two handlers "terminate" and "unexpected" generally depend on the application context: their
respective behaviour should therefore be carefully analysed when being used.

Example of redefining "terminate"
void MyEnd () {
 cerr << "No processed exception\n" ;
 exit (-1) ;
}

void End () throw (char *) {
 // Modification of termination handler
 terminate_handler previousTerminate = set_terminat e (MyEnd) ;

 // Code
 if (…) throw "Exception" ;

 // Recovering standard handler
 set_terminate (previousTerminate);
}

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 57

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example of redefining "unexpected"
void MyEnd2 () throw (int) {
 cerr << "Unexpected exception\n" ;
 throw (1);
}

void End2C () throw (char *) {
 // Modification of termination handler
 unexpected_handler previousUnexpected = set_unexpe cted (MyEnd2) ;

 // Code
 if (…) throw "Exception" ;

 // Recovering standard handler
 set_unexpected (previousUnexpected);
}

void End2 () {
 try {
 End2C ();
 }
 catch (int e) {
 cerr << "Interception " << e << endl ;
 }
}

Err.Canal

M=1;R=0 ;P=114;V=1

Any

Error messages must be sent to the user via a dedicated input output channel,
when this exists in the language. If it does not exist, a dedicated channel must be
created for this purpose.

Description

The channel may be any type of communication resource: a logic channel, file, console, etc.

Justification

Improves consistency in error reporting
Enhances reliability

Example

In SHELL
The error descriptor 2 is used, which corresponds to a standard error file. The user can ask that
normal display be redirected in the file, while maintaining error display on-screen.

if a_test_that_must_succeed
then
 # Any operations
else
 print 'The test_that_must_succeed has failed!' > &2
fi

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 58

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.7. DYNAMIC

Dyn.OS

M=1;R=1;P=54;V=0

Any

Task and thread management mechanisms offered by the operating system and/or
the real-time kernel must be carefully analysed. Decisions regarding the use or
non-use of each mechanism must be carefully discussed.

Description

The programming environment generally offers specialised classes and services to allow multi-tasking
and multi-threading to be managed. In particular, classes for managing mutual exclusion and services for
inhibiting preemption, etc. are offered.
Compilation options also allow the generated code to be customised: for example, to verify or ensure that
one variable will not be shared by various threads.

Justification

Multi-thread programming is highly context-specific.

Example

In IDL
On multi-processor machines, IDL authorises multi-threading, which increases calculation speed by
simultaneously using the available processors. IDL automatically assesses the calculations performed
by the various routines and decides which will benefit from multi-threading, according to the
following parameters:

Number of elements concerned,
Processor availability,
Availability of a multi-threaded version of the routine used.

Only a certain number of IDL instructions have a multi-threaded version, and may as a result benefit
from multi-threading. To obtain this list, refer to IDL online help under the heading "Services that
use the thread pool".

Dyn.AttenteActive

M=0;R=1;P=96;V=0

Any

No tasks or threads should have active waiting.

Description

An active loop is defined here as a permanent loop around a scanning or processing activity that is never
suspended by standby or waiting.
Tasks with active loops are prohibited.

Justification

Tasks with active loops are permanently active and risk monopolising the CPU at the expense of other
tasks, and possibly freezing the application.
The correct operation of a program that does not respect this rule depends on the behaviour of its
computer and its operating system when managing tasks. It is conditioned by the number of processors,
priority management and the time share used.
The reliability of this type of program is uncertain, and relies on the machine that executes it.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 59

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example

Not Applicable

Dyn.Abort

M=0;R=1;P=91;V=1

Any

A program must never be abruptly ended by a task or thread termination
instruction (such as exit or abort).

Description

When a termination instruction is executed, this causes the task to be abruptly stopped. The resources
used by the task may be in an incoherent state; tasks that depend on these resources may be abruptly
aborted as a result.

Justification

Enhances program reliability, especially as regards data and processing consistency

Example

In ADA
The abort instruction is not effectively executed when the instruction is read, but rather is delayed
until a "check-point", such as the beginning or end of a process, select instruction, delay, This
delay cannot be controlled and may lead to unexpected behaviour.

Dyn.PrioRelatives

M=1;R=1;P=55;V=1

Any

Absolute priorities must not be used for tasks and threads, but rather relative
priorities.

Description

Real-time architecture must be designed without impacting the task sequencing algorithm. Respecting this
rule guarantees application portability.

Justification

Enhances the efficiency of multi-task programs
Enhances the portability of multi-task programs

Example

In ADA
No Priority pragma is used to manage task synchronisation.
In certain real-time applications, the priority pragma may be authorised in order to optimise
computer resources.

Dyn.Ressources

M=0;R=3;P=38;V=0

Any

The resources allocated in a thread must be freed in this same thread.

Description

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 60

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

For a multi-threading support, many compilers verify this point.
Exception: if a thread is written to implement an instance factory: this thread will be solely in charge of
building instances, which are destroyed by other threads.

Justification

Enhances the reliability of multi-task applications

Example

In C++
When programming in Windows , the allocation of a COM/OLE object by a thread must be freed by
the thread.

Dyn.SectionCritique

M=0;R=3;P=37;V=0

Any

The creation and initialisation of tasks or threads must be encapsulated; they must
be performed in a critical section, without any possibility of being interrupted.

Description

Not applicable

Justification

No events must disturb task creation and initialisation.

Example

In JAVA
The start() method should be called inside the class.
Incorrect example:

// Implementation of the Runnable interface.
class Display implements Runnable {
 ...
 public void run() {
 while (true) {
 // Draw.
 ...
 repaint();
 }
 }
}

// In another class, creation of the interface.
Drawing displayed = new Display("Christmas Tree");

// Creation of the object Thread.
Thread myThread = new Thread(drawing); // no enca psulation

// Activation of thread.
myThread.start(); // no encaps ulation
...

Correct example:
// Implementation of the Runnable interface.
class Animation implements Runnable {

 // Private attribute used to store a thread

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 61

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 // identifier.
 private Thread myThread;

 // Creation of a Thread object and activation o f the thread.
 // Initialisations in the constructor.
 Animation(String name) { // Scope of the constructor is
 // not speci fied.
 myThread = new Thread(this); // Creation of a Thread object
 myThread.start(); // activatio n of thread.
 }
 ...
}
// Creation of an animation.
// The way in which the animation object is impleme nted does not appear
// from the outside.
Animation Hello = new Animation("Hello");

Dyn.Partage

M=1;R=3;P=23;V=0

Any

Variable shared between threads should be carefully analysed.

Description

Specifically, the resources (essentially variables) shared between the main thread and secondary threads
should be analysed, as well as resources shared between secondary threads.
A thread is generally implemented by a function whose launch mode is asynchronous: this rule means
that data that is local to this function or to functions called by this function may be handled in a thread.
In handling of variables shared between threads, the keyword volatile should be used to inhibit compiler
optimisation relating to the recognition of sub-expressions: note, however, that this attribute does not
guarantee data integrity. This declaration must be completed by using semaphores or mutex.

Justification

Non-synchronisation between threads may lead to incoherent results or unexpected behaviour concerning
the shared resources. This non-synchronisation may be very critical during the allocation or deallocation
of these resources.

Example

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 62

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.8 INTERFACES

Int.ExistenceFichier

M=0;R=2;P=66;V=1

Any

The existence or non-existence of a file must always be verified before the file is
opened or created; actions to be performed in the event of failure must be
provided for.

Description

Read- or write-access to a file may be prevented for several reasons.

Justification

Enhances reliability

Example

Not Applicable

Int.CheminFichier

M=2;R=0 ;P=113;V=1

Any

The access path to any file must be parameterised.

Description

The file access path may be placed in an environment variable, but other parameterisation resources may
also be used (parameter files, etc.).

Justification

Facilitates upgrading.

Example

In C
#include <stdlib.h>
char *Name_Directory;
Name_Directory = getenv ("REP_FILE_CONF"); // recov ery of full
// path to directory containing
// configuration files

Int.CheminAbsolu

M=2;R=1;P=56;V=0

Any

Access paths must not make any hypotheses on the the current directory.

Description

The current directory is volatile information.

Justification

Improves reliability and portability.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 63

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example

In C
Paths to includes are independent of the file location or compilation directory

In SHELL
The current directory ('.') must never be in the search path used by a SHELL program

Int.Environement

M=2;R=0;P=83;V=0

Any

Elements relating to program installation must be designated using specific
environment variables

Description

Not applicable

Justification

Enhances portability.

Example

In WAWE
The environment variable "WAVE_PATH" must be positioned outside of the application and must
not be modified in services. This environment variable indicates the directory(ies) in which the
modules and services that may be used by WAVE are located. These directories are scanned in the
order of their appearance in "WAVE_PATH". This variable is comparable to the "PATH"
environment variable used in UNIX.

Int.Temporaire

M=0;R=1;P=92;V=0

Any

All temporary files created by the application must be located in dedicated areas
and destroyed at the end of execution, at the latest.

Description

Program execution must not pollute disk space.
Temporary files should be destroyed as soon as possible, especially if they are large.

Justification

Disk space is finite; it is essential that this space be conserved.

Example

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 64

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Int.FichierFermeture

M=0;R=1;P=93;V=0

Any

All open files must be closed at the same algorithmic level: module, class,
operation.

Description

Not Applicable

Justification

This rule allows file opening and closing operations to be grouped together in the same service to ensure
that the file has effectively been closed.
File closing is important, as it frees logic units and allows other files to be opened (the number of
available logic units is limited).

Example

In PVWAWE
Files can be closed using either the "CLOSE" function or the "FREE_LUN" function, depending on
the opening mode.
Processing associated with files (reading, writing) may be performed in other called services. Only
OPEN and CLOSE operations must be performed in the same service.

Int.GrouperES

M=1;R=0;P=112;V=0

Any

Input/output instructions of the same type must be grouped together.

Description

It is better to have fewer long I/O instructions, rather than numerous short I/O instructions.

Justification

The surplus regarding the operating system kernel function calls penalises the system.

Example

In C
// incorrect
printf(" x = %f", Var_X);
printf(" y = %f", Var_Y);

// correct
printf("x = %f y = %f", Var_X, Var_Y);

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 65

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

7.9. QUALITY

Qa.Ressources

M=1;R=0;P=111;V=0

Any

The software must be free of user interface details by using separate graphical
resources

Description

The graphical capacities of the target machines should not be assumed. When building a GUI, the
graphical attribute values for the hardware platform should never be set.

Justification

Enhances portability.

Example

In general:
When building an GUI, the character font or font size should never be set.

In JAVA:
To determine the list of fonts available, use:

java.awt.Toolkit.getFontList()
To determine character font size, use:

Font.getFontMetrics()
Graphics.getFontMetrics()

For example:
String fontCourier = ... // Not set.
titleFont = new java.awt.Font(fontCourier, Font.BOL D, 12);
titleFontMetrics = getFontMetrics(titleFont);

In PVWAWE:
Assign font sizes and colours in a resource file.
Use constants to define widget size in pixels (size, position etc.).
Use constants to allocate resources.
Use constants to locate the position of menu items.

Qa.PortType

M=1;R=0;P=110;V=1

Any

The portability of base types should always be a concern.

Description

Base types (numeric, characters) generally depend on the machine or environment in which they are
executed.

Justification

Enhances portability.

Example

In C:
Base types (int, float) should not be used as is. The physical size of the int, type integer depends on
the target machine. In general, it corresponds to the most natural size on the target machine.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 66

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

In ADA:
INTEGER sub-types will be defined.
In addition, a distinct type will be defined for each group of quantifiable entity, with the appropriate
application constraints. As a result, the type is implemented correctly regardless of the machine. If
we want the type to be represented identically (16, 32, 64, ... bits) on all machines, a representation
clause must be added.

-- First unauthorised example
procedure COUNT_AIRCRAFT is
NO_OF_AIRCRAFT: INTEGER := 10 ;
begin
 ...
end COUNT_AIRCRAFT;

-- Second authorised example: be certain to define
-- application type only for counting aircraft
procedure COUNT_AIRCRAFT is
MAX_NO_OF_OBJECTS: constant := 100;
type AN_AIRCRAFT_COUNTER is range 0.. MAX_NO_OF_OBJ ECTS;
NO_OF_AIRCRAFT: AN_AIRCRAFT_COUNTER := 10 ;
begin
 ...
end COUNT_AIRCRAFT;

Qa.RepérerPort

M=1;R=0;P=108;V=0

Any

The non-standard or non-portable elements used must be identified and program
functioning must be adapted if need be.

Description

Programs that must be executed on more than one target must detect and adapt themselves to targets.

Justification

Enhances portability.

Example

In SHELL
Many aspects of script functioning may be altered, depending on the operating system executing the
program. For a script to be portable, these dependencies must be factorised as much as possible and
isolated in a specific initialisation block. It may be wise to create a special initialisation/configuration
file containing these dependencies. This file will concerns the entire project and will be read by each
script.
Here is how a script might begin:

version=`uname -r | cut -d. -f1`
case $version in
 5) # Initialisations Solaris 2.x
 …
 4) # Initialisations SunOS

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 67

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

 …
 *) echo Type of system `uname -a` unknown
 exit 1
 …
esac

Qa.TestRetour

M=0;R=2;P=67;V=0

Any

Function return must be systematically tested, specifically system function return.

Description

A function call must never appear as an independent instruction. A function must never be used only for
its side effects.

Justification

The role of a function is to provide a value in the assessment of an expression. The programmer must use
this function return value: if this is not the case, the programmer must use a procedure and not a function.

Example

In C:
// correct
State = Control_State (Var_X, Var_Y, Var_Z);
(void) printf ("State =%d", State); // Tolerated fo r this type of
function

// incorrect
(void) Control_State (Var_X, Var_Y, Var_Z);
// or
Control_State (Var_X, Var_Y, Var_Z);

Qa.Branches

M=1;R=0;P=107;V=0

On-board

In conditional instructions, the most frequent and most simple branches must be
processed before the others, in order to enhance performance.

Description

Multiple choice type instructions verify the case according to its order of appearance in the block.
Frequent and simple cases should therefore be placed before rare and complex cases.
If the portion of code concerned is not critical in regard to execution time, logical case order should be
used (see Tr.Choix)

Justification

Improves execution time

Example

Not Applicable

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 68

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Qa.Performances

M=1;R=0;P=106;V=0

Any

Effectiveness can be enhanced by studying the possibilities made available by the
development environment (compiler, performance analysis tools, etc.)

Description

"Profilers" allow application execution to be traced. Analysis tools may then be used to examine the parts
of the application that use the most resources (memory or execution time). Some software allow these
analyses to be performed automatically by ensuring distributed process monitoring.
In most cases, 90% of execution time is consumed by only 10% of a program, and this, most often in
areas in which we might least expect. Optimisation efforts must thus be concentrated here.

Justification

Improves effectiveness

Example

In C++:
Compilers generally propose specific options for function management. In particular:
call management (fast call, use of directories rather than the stack for non-recursive functions, short
calls, etc.),
inline management: inhibition of expansions on option, on condition; seeking functions to be
automatically put inline, etc.,
pointer representation mode to virtual member functions: previous definition of pointers,
acknowledgement of multiple heritage, etc.

In JAVA:
The interpreter prof option creates a profile file in the current directory, which can subsequently be
used.

Qa.Pile

M=0;R=3;P=42;V=1

On-board

Stack consumption as compared to available quantities must be carefully studied.
In particular: local data, parameters and call tree depth.

Description

When the size allocated to the stack is critical, it may be preferable to work by side effect on global
variables rather than using local data or parameter passing, which will create stack consumption. This
choice must be guided by careful analysis of the call tree depth, in "worst case" type scenarios.
In C, C++ and ADA, an address or reference passing mode may also be used for data that occupies
significant memory space. This would allow space to be saved in the stack (the size of the data address is
smaller than the data itself).

Justification

Improves effectiveness: correct stack sizing allows RAM resources to be optimised
Enhances reliability by avoiding stack overflow

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 69

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Example

Not Applicable

Qa.Interruptions

M=0;R=1;P=93;V=0

Any

Software processing dedicated to accounting for hardware interruptions must be
as brief as possible.

Description

This software process is called an interruption handler. Each interruption is associated with a handler or
IT processing. Interruption acknowledgement blocks the acknowledgement of other interruptions (not
considering re-entry), which may be events that are important and which must be handled in a timely
fashion. Therefore, in order to avoid monopolising the processor, processing times for interruptions must
be kept to a minimum, and important tasks must be moved to the application excluding interruptions.

Justification

Improves response time for real-time applications.

Example

Not Applicable

Qa.Factorisation

M=0;R=1;P=97;V=0

Any

Execution time-consuming sub-expressions must only be assessed once.

Description

Arithmetic expressions must be factorised to the greatest extent possible; invariants must also be removed
from loops.

Justification

Improves effectiveness

Example

In ADA
Y = 3*X*X + 2*X => 5 operations
Y = X * (3*X + 2) => 4 operations

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 70

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Qa.Algèbre

M=0;R=1;P=98;V=0

Any

Algebraic identities which can accelerate calculation must be used.

Description

Algebraic identities may be used judiciously to facilitate certain calculations.

Justification

Improves effectiveness

Example

In general:
In searching for the point closest to point (X0, Y0), searching for the point that minimises the
expression (X1-X0)^2 + (Y1-Y0)^2 is sufficient ; calculating the square root is not necessary.

Qa.Correlation

M=1;R=1;P=57;V=0

Any

Correlated quantities must be calculated simultaneously.

Description

Group together all calculations relating to the same problem.

Justification

Improves effectiveness

Example

In IDL:
IDL includes routines to simultaneously calculate correlated quantities.
The maximum value of the array table is calculated, and the minimum value is simultaneously
calculated as well.

MaxValue = MAX(array, MIN = minValue)

Qa.ReutValide

M=3;R=2;P=14;V=0

Any

Only validated services may be reused.

Description

Only standard, validated and up-to-date components must be reused.

Justification

Enhances portability.

Example

In JAVA:

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 71

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Use JFC - Java Foundation Class - packages from Sun, which contains among other things the
Swing graphical interface classes as well as an API Java 2D implementation.
Libraries may be re-written for very specific project constraints.
Example: This may be the case for the library of basic mathematical functions other than those
provided with the target arithmetic processor. This allows the application to effectively manage:
numeric behaviour (which is independent of the machine, host or target)
the number of nesting levels in the call tree (thereby minimising the size of the execution stack)
performance in terms of calculation time.

In PERL:
For developments that require the current or future possibility of being executed on various OS,
direct system calls should not be performed, but rather, Perl primitives should be used as much as
possible, as they are generally more portable.

Do not write:
print `whoami`;
but:
print getlogin;

Qa.OptionsCompil

M=1;R=2;P=43;V=1

Any

With a compiled language, the compilation options that will highlight a
maximum number of compilation warnings should be used. Each unresolved
warning must be justified.

Description

By default, compilers do not provide the maximum number of compilation warnings.

Justification

Enhances robustness.

Example

In C
Example: Using the option –Wall in the gcc compiler specifically locates problems that are difficult
to debug: implicit conversion between signed and unsigned values or the illicit use of an allocation in
a test.

In PERL:
PERL provides the programmer with a way of being warned when he performs coding operations
that are not recommended (or prohibited). There are two ways to activate this check: the first is by
using the "-w " option passed to the Perl interpreter, and the second solution involves the use of "use

warnings ".

Qa.Instrumentation

M=2;R=1;P=49;V=1

Any

Code instrumentation (code, assertions) must be created using dedicated
operations. If the language does not offer these operations, a specific module
concerning them must be created.

Description

Code instrumentation allows the rule Tr.ProgDefensive to be applied.
In the specific case of on-board software, special care will be taken when creating instrumentation.

Justification

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 72

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Enhances robustness.

Example

In on-board C
Macros defined in the file "lice.h" are used for the Myriade line.

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 73

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

8. SUMMARY

8.1. RULE SUMMARY TABLE

The rules are summarised below, in alphabetical order.
Id. Rule Title Page
Don.AllocDynbord Dynamic memory allocation is prohibited. 35
Don.AllocDynSol If the language supports the concept, dynamic memory allocation must be

used sparingly, and with caution.
36

Don.AllocEchec If the language supports the concept of dynamic allocation, the potential
failure of a memory allocation request must be systematically provided
for.

36

Donc.AllocErreur An error that occurs during processing must not cause memory to not be
freed.

37

Don.AllocLiberation All allocated memory must be freed at the same conceptual level. 37
Don.ChaineOper Global operations for character strings (initialisation, copy, duplication,

comparison, search, modification) must be performed using standard
primitives provided by the language, when they exist.

35

Don.Declaration All data used must be explicitly declared 27
Don.Enumeration The use of constants or symbols must be preferred (enumerative, if the

language allows) over the use of whole numerical data. The use of whole
numerical data must be essentially limited to simple calculation or
counting.

30

Don.Homonymie The use of homonyms must be avoided except in cases of overload or
explicit redefinition.

31

Don.Initialisation Variables must be initialised before being used for the first time. 32
Don.Invariant Constants must be defined for entities whose value is invariant. 30
Don.Localite Local data declarations are preferred over more global declarations: data

that is local to a module are preferable to global data, formal parameters
are preferable to global data, local data for an operation are preferred over
module-level data, and local data for an instruction block are preferable to
local data for an operation.

29

Don.LocalUnique Each local datum must have a unique use. 33
Data.PointeurNonAff If the language supports the pointer concept, when a pointer is not

associated with a specific object at declaration, a comment must specify
the object that will be associated with it and, if the language allows,
initialise it to null.

32

Don.Separee Each piece of data must have a separate declaration. 27
Don.Structure When a conceptual object must be implemented as several data, this data

must be grouped in a structuring entity (class, structure, record, type)
according to the possibilities provided by the language.

31

Don.TableOper Global operations for tables (initialisation, copy, duplication, comparison)
must be performed using standard primitives provided by the language,
when they exist.

34

Don.TablePrincipe The processing principal (line x column or column x line) for double entry
tables must be defined.

33

Don.Typage Data must be systematically and explicitly typed. 28
Don.TypeAnonyme Anonymous types must not be used. 28
Don.Utilisee All data that is defined must be used; a datum that is no longer used must

be deleted.
33

Dyn.Abort A program must never be abruptly ended by a task or thread termination
instruction (such as exit or abort).

59

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 74

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id. Rule Title Page
Dyn.AttenteActive No tasks or threads should have active waiting. 58
Dyn.OS Task and thread management mechanisms offered by the operating system

and/or the real-time kernel must be carefully analysed. Decisions regarding
the use or non-use of each mechanism must be carefully discussed.

58

Dyn.Partage Variable shared between threads should be carefully analysed. 61
Dyn.PrioRelatives Absolute priorities must not be used for tasks and threads, but rather

relative priorities.
59

Dyn.Ressources The resources allocated in a thread must be freed in this same thread. 59
Dyn.SectionCritique The creation and initialisation of tasks or threads must be encapsulated;

they must be performed in a critical section, without any possibility of
being interrupted.

60

Err.Canal Error messages must be sent to the user via a dedicated input output
channel, when this exists in the language. If it does not exist, a dedicated
channel must be created for this purpose.

57

Err.FinOperation Error processing must be localised at the end of the operation. 54
Err.Impression The possibility of reporting an error message must be studied. 53
Err.IntegriteDonnee Error triggering must not modify data integrity. 55
Err.Mecanisme Error management must be performed using resources implemented in the

language (exceptions or other). If the language offers several possible
mechanisms, the mechanism that best respects the other error management
rules should be selected. If the language does not offer specific error-
management mechanisms, a dedicated error management module must be
created.

51

Err.Nom An error process or an exception must have a name that expresses the
reason for which the service requested may not be provided.

53

Err.Operation Error processing must be performed at the level of the operation that may
process this error.

54

Err.ToutesTraitées All errors must be processed. No errors must be masked or ignored: error
triggering must never abruptly interrupt the program.

56

Err.TraitementDiff Error processing must be differentiated according to fault. 52
Id.ClasseType Though not dictated by the language, the name of a type or class must be a

general term that identifies a group or category of data.
24

Id.ConstSignif The name of a constant must convey its meaning and not its value. 23
Id.Fonction Functions must be named using a noun that represents the value supplied

by this function. For a function that returns a Boolean value, a verb phrase
should be used to express a true or false status.

26

Id.IdentRegle Identifiers must be simple or created by concatenating several terms; the
same concatenation, use of determinants and upper and lowercase letters
must be common to all identifiers used in the project.

21

Id.IdentSignif Identifiers must be descriptive. 21
Id.NomDonnee The name of a datum must be a common name taken from everyday

language; the plural form must be used if the datum is a set or group.
22

Id.NomParFormel The name of a formal parameter must convey the relationship between the
parameter and the operation concerned.

26

Id.Pointeur If the language supports pointer or reference concepts, the name of a
pointer or reference must convey the semantics of the object it identifies
(pointed or referenced object).

24

Id.Procedure Procedure names must be infinitive verbs or verb groups that indicate the
action to be completed.

25

Id.Tache Task names must be composed using procedures and events associated
with and used to trigger or sequence the task.

25

Id.VarSignif The name of a variable must convey its meaning. 22

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 75

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id. Rule Title Page
Id.VarType The name of a variable may also convey its type, nature or scope. 23
Int.CheminAbsolu Access paths must not make any hypotheses on the the current directory. 62
Int.CheminFichier The access path to any file must be parameterised. 62
Int.Environement Elements relating to program installation must be designated using specific

environment variables
63

Int.ExistenceFichier The existence or non-existence of a file must always be verified before the
file is opened or created; actions to be performed in the event of failure
must be provided for.

62

Int.FichierFermeture All open files must be closed at the same algorithmic level: module, class,
operation.

64

Int.GrouperES Input/output instructions of the same type must be grouped together. 64
Int.Temporaire All temporary files created by the application must be located in dedicated

areas and destroyed at the end of execution, at the latest.
63

Org.Couplage Linking between modules must be minimised: use links between modules
must be uni-directional and be fewer than a limit set for the project.

11

Org.DonneesOper Data and operations must be grouped together in modules to form
consistent packages, by using the available resources of the language.

10

Org.Duplication Code duplication must be avoided by intelligently using the techniques
available at language level (passing parameters, using abstract operations,
using metalanguages).

14

Org.Masquage Data usage links should be avoided: read- and write-access operations
should be used instead (information masking and data encapsulation
principle), when this principle is not overly prejudicial for the language
used.

12

Org.MatérielIndep Codes that have dependencies with hardware or operating system must be
kept separate from the rest of the software code.

16

Org.Module The code lay-out of each module must be standardised for the project. 13
Org.ModuleNom A module name must convey the conceptual unit that the module

represents
11

Org.MultiLang When more than one programming language are used for a project,
correspondence rules must be defined for the elements exchanged between
the languages.

14

Org.Principal The main program must be limited to the highest-level control flow:
creating tasks, initialisation, sequencing. It must not contain processing
algorithms or calculations.

15

Pr.Aeration The text in a program must be well-spaced. Operators and operands must
be separated by spaces.

17

Pr.CartDonnée Each data declaration must be commented. 19
Pr.CartStd A standard comment box defined for the project must be used to comment

on the header of each module and the definition of an operation.
19

Pr.CommFonc Comments must be functional and not duplicate the code. 20
Pr.CommIdent Comments must be located in the same area as the relevant code, and

indented at the same level as this code.
20

Pr.Indentation Code must be indented. A convention for representing control structures
must be defined and respected.

17

Pr.Instruction There should be no more than one instruction per line. 17
Pr.LongLine The maximum number of characters in a line of source code is less than a

limit defined for the project.
18

Qa.Algèbre Algebraic identities which can accelerate calculation must be used. 70
Qa.Branches In conditional instructions, the most frequent and most simple branches

must be processed before the others, in order to enhance performance.
67

Qa.Correlation Correlated quantities must be calculated simultaneously. 70

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 76

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id. Rule Title Page
Qa.Factorisation Execution time-consuming sub-expressions must only be assessed once. 69
Qa.Instrumentation Code instrumentation (code, assertions) must be created using dedicated

operations. If the language does not offer these operations, a specific
module concerning them must be created.

71

Qa.Interruptions Software processing dedicated to accounting for hardware interruptions
must be as brief as possible.

69

Qa.OptionsCompil With a compiled language, the compilation options that will highlight a
maximum number of compilation warnings should be used. Each
unresolved warning must be justified.

71

Qa.Performances Effectiveness can be enhanced by studying the possibilities made available
by the development environment (compiler, performance analysis tools,
etc.)

68

Qa.Pile Stack consumption as compared to available quantities must be carefully
studied. In particular: local data, parameters and call tree depth.

68

Qa.PortType The portability of base types should always be a concern. 65
Qa.RepérerPort The non-standard or non-portable elements used must be identified and

program functioning must be adapted if need be.
66

Qa.Ressources The software must be free of user interface details by using separate
graphical resources

65

Qa.ReutValide Only validated services may be reused. 70
Qa.TestRetour Function return must be systematically tested, specifically system function

return.
67

Tr.Booleen A complex conditional expression must be replaced by a unique Boolean
that expresses a state.

47

Tr.BoucleSortie A loop must feature a unique nominal exit. 42
Tr.CalculStatique In compiled languages, it is better to perform calculations on static

expressions at compilation, with maximum accuracy, rather than
dynamically calculated expressions.

46

Tr.Choix A choice instruction must be used rather than a simple conditional
instruction when there is more than one alternative.

40

Tr.ComparaisonStrict Strict comparison (equality, difference) between floating numbers (real,
complex) must be replaced by inequality.

38

Tr.ComparConst In a comparison with a constant, the variable must always be to the left of
the comparison operator.

48

Tr.ControleRacc If the language supports the concept, shortcut forms of control must be
used whenever appropriate.

39

Tr.DoubleNeg Double negatives must be avoided in Boolean expressions. 47
Tr.FonctionSortie A function must only contain one exit instruction. 44
Tr.Goto The unconditional branching instruction (goto) must only be used in very

limited and specific cases.
41

Tr.MelangeType Different types of data should not be mixed in the same expression. 48
Tr.ModifCompteur The loop counter must not be modified in loop processing. 43
Tr.ModifCondSortie The loop exit condition must not be modified in loop processing. 42
Tr.ModifConst The value of a constant must not be modified. 39
Tr.ModifParSortie An operation must not modify input parameters. 50
Tr.ModifVarGlobal A function must not modify the value of a global variable or involve

output parameters.
50

Tr.OrdreChoix When using a choice instruction, all possible cases must be provided,
preferably explicitly and in the "logical" order of the cases.

40

Tr.OrdreParFormel The declaration order for formal parameters must be standardised. 49
Tr.ParamOptionnel Optional parameters must not be used when defining an operation. 49
Tr.Parenthèses Expressions must be systematically enclosed in parentheses. 46

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 77

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Id. Rule Title Page
Tr.ParSortie All output parameters for a procedure must have received a value before

the first processing condition, by initialisation by default, if necessary. The
same is true for variables used to return the value of a function.

51

Tr.ProgDefensive Defensive programming, which involves the use of pre-conditions and
post-conditions, should be preferred.

45

Tr.RecursifBord Recursivity is prohibited. 44
Tr.RecursifSol Recursive operations must not be used unless they are conceptually

simpler than an equivalent iterative operation.
43

Tr.Residus No programming residue must exist as comments in the code: an
instruction that is no longer used must be deleted.

46

Tr.TestEgalite Use of the equality or difference test must be replaced by inequality where
possible.

38

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 78

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

8.2. "COMMON" TRACEABILITY

This table provides the correspondence between the rules set out in this document and the rules found in language manuals. It contains the same number of lines as rules in this
document, and as many columns as there are language manuals. The cells are empty if the common rule is not mentioned in the language manual; otherwise, cells contain the list
of rules in the language manual which are covered by the common rule.
Rule /
 Language
(Version) ADA (5)

ON-BOARD ADA
(3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Don.AllocDynbord MEM (1) EMBED-malloc
Don.AllocDynSol Memory.Allocation
Don.AllocEchec Excep.Allocation
Donc.AllocErreur Excep.Free
Don.AllocLiberation

 CO.DAT-FreeDyn MEM (1)

Pointer.FREE-
MEMORY;Routines
.VARIABLESHEAP

Don.ChaineOper Prog_CompStr_1
Don.Declaration

 CO.DAT-Vis CO.DAT-Vis
CO.DAT(1);CO.DA
T(4) DECL(1) Prog_DeclVar_1

Don.Enumeration
Types.Enumerated DECL(7) CO.DAT-Lit

CO.DAT(1);CO.DA
T(2) DATA(1)

Const.Define;Sema
ntic.Enum MAINT-Const

Constant.DEFINITI
ON

Don.Homonymie Identifiers.Homony
ms IDENT (10) CO.DAT-VarRedef NAME(2)

Routines.UNIQUE-
NAME

Don.Initialisation Variables.Initialisati
on DECL (9) CO.DAT-IniVar CO.DAT-IniVar CO.DAT(5) DATA(7) Data.InitLocal

VARLOC-
Initialisation ENV-5 COMMON(3)

Don.Invariant

Constants.Definition DECL (10) CO.DAT-Lit DATA(3) Const.Literal

Expression.INVARI
ANT;Constant.DEFI
NITION

Don.Localite

Variables.Block MISC(6)
DECL(10);DECL(14
)

Data.Local;Data.Pro
ximity

VARLOC-
Proximity;OPTIM-
AccessVars VAR-5;ENV-1 COMMON(4)

CommonBlock.AVO
ID;;CommonBlock.
POSITIONAL-
PARAMETER-1

Don.LocalUnique VARLOC-Utilisation
Data.PointeurNonAff DECL(13)
Don.Separee Data.DeclSeparate VARLOC-Line
Don.Structure

CO.DAT-
Lit;CO.DAT-
TypConst DATA(5)

Structure.MINIMISA
TION

Don.TableOper Instructions.CopyTa
bles Table.EQUALITY

Don.TablePrincipe CO.DAT(9) TABLE(5) Table. PATH
Don.Typage CO.DAT-TypVar EMBED-types-use DECL(2)
Don.TypeAnonyme

Types.Declaration DECL (1)
CO.TY-Def;CO.TY-
CompLit

Don.Utilisee CO.DAT(6) DATA(9) Prog_InitVar_1
Dyn.Abort Tasks.Abort TASK (8) CD.SG(3)
Dyn.AttenteActive Tasks.ActiveLoop TASK (6)
Dyn.OS

 KERNEL (5)
Thread.Configuratio
n

Routines.MULTITH
READING

Dyn.Partage Thread.Sharing
Dyn.PrioRelatives Tasks.Priority TASK (3)
Dyn.Ressources Thread.Resources

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 79

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Rule /
 Language
(Version) ADA (5)

ON-BOARD ADA
(3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Dyn.SectionCritique
 KERNEL (4)

THREAD-
Encapsulate

Err.Canal I/O-5
Err.FinOperation Exceptions.Regroup

ing
Err.Impression Exceptions.Failure EXCEPT (1) Prog_TraceErr_1
Err.IntegriteDonnee Excep.Integrity
Err.Mecanisme

Exceptions.Failure EXCEPT (5) CD.PRO-ErrMgt EXEP(1) Excep.Strategy METH-Return
ERR-1;ERR-2;ERR-
3 Prog_CodeErr_1

ERROR(1);ERROR
(2)

Routines.REPORT;
Errors.ON_ERROR-
ON_IOERROR;Erro
rs.CATCH

Err.Nom Identifiers.Exception
s IDENT (9)

Err.Operation

INSTR (5) ;EXCEPT
(3) Excep.Proce EXCEP-CatchUse

Err.ToutesTraitées EMBED-Interruptions Excep.Terminate
Err.TraitementDiff Exceptions.Failure EXCEPT (1)
Id.ClasseType

Identifiers.Types IDENT (2) CO.TY-NameTyp NAME-Class STRUCT(8)
CommonBlock.NA
MING

Id.ConstSignif
Identifiers.Constant
s DECL (11)

CO.DAT-
NameConst;CD.PP-
NameMacro NAME-Constant

Id.Fonction
Identifiers.Functions IDENT (6) CP.SG-NameFunc

NAME-
AccessAttribute FILE-3 Name_IdFunc_1 Routines.NAMING

Id.IdentRegle
Identifiers.Undersco
re

IDENT (2) ; IDENT
(3) ;IDENT (12) ;
FILE(2) CO.PRE(6) NAME(4) Name.General

STYLE-Language;
NAME-Default Name_idCons_1

CommonBlock.NA
MING

Id.IdentSignif Identifiers.Naming;
Identifiers.Descriptive
ness IDENT (1) CO.PRE(6) Name.General NAME-Explicit Name_DescriId_1 STRUCT(7)

Id.NomDonnee
Id.NomParFormel Identifiers.FormalPa

ram IDENT (13)
Id.Pointeur Identifiers.Pointers IDENT (8)
Id.Procedure

Identifiers.Procedur
es IDENT (5)

CP.SG-
FuncNam;CD.PP-
MacroName Name.PrivateData

NAME-
AccessAttribute FILE-3 Routines.NAMING

Id.Tache Identifiers.Procedur
es IDENT (5)

Id.VarSignif Identifiers.Variables IDENT (4) CO.DAT-VarName VAR-2 Name_IdVar_1 Variable.NAMING1
Id.VarType

Identifiers.Variables CO.DAT-VarName Name_IdVar_1
STRUCT(8);STRUC
T(9) Variable.NAMING1

Int.CheminAbsolu ENV-3
Int.CheminFichier File.AccessPath CD.IO-FileParam
Int.Environement PORTAB-ConstFlat ENV-4 STRUCT(11)
Int.ExistenceFichier
Int.FichierFermeture I/O(3) I_O.CLOSURE
Int.GrouperES CO.IO-IOGroup CO.IO(3)
Int.Temporaire I/O-1;I/O-2
Org.Couplage

Packages.Linking
CO.DAT-
NbGlobVar MOD(2) COMMON(2)

CommonBlock.SHA
RING

Org.DonneesOper Packages.Design PACKAGE (1) DECL(5) ORGANI-Package FILE-5

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 80

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Rule /
 Language
(Version) ADA (5)

ON-BOARD ADA
(3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Org.Duplication

 CD.PP-InlineFunc EMBED-Inline

Function.Inline;Meta
.Techniques;Meta.C
oding

Org.Masquage Packages.Specificat
ion

PACKAGE
(3);RISQ (3) MOD(4) Encap.MemberData CLASS-DataProtect

Org.MatérielIndep

 CD.DV-SeparPort PORT(2)

PORTAB-InOutErr;
PORTAB-GUICapa,
PORTAB-Limit Prog_SysSpec_1

Org.Module

 CD.SG(1) PRES(4)
Orga.Order;Orga.Pr
esFunc

Pres_OrgMod_1;
Pres_OrgScript_1;
Pres_OrgFunc_1

STRUCT(2);STRUC
T(3):STRUCT(4);ST
RUCT(6)

Presentation.ROUT
INE;
Presentation.STRUC
TURES-CONTROL;
Presentation.FILE-
BATCH;Presentatio
n.MODULE

Org.ModuleNom Identifiers.Packages
;File.Naming IDENT (7) ; FILE(2) CP.SG-FileRole NAME(1):MOD(1) Name.Files FILE-1

Name_IdMod_1;
Name_IdScript_1 STRUCT(1) Naming.SUFFIX

Org.MultiLang COMM(5)
Org.Principal CD.SG(5) PROG(1)
Pr.Aeration

Presentation.Spacin
g MISC(10)

CO.EX-
UnaryOp;CO.EX-
BinaryOp CO.PRE(5) DOC-Layout

Pres_Space_1;Pres
_NoSpace_1;Pres_Li
neSep_1 STRUCT(6)

Pr.CartDonnée CO.PRE-CommVar DOC-Layout STRUCT(6)
Pr.CartStd Presentation.Heade

r PRES (7) CP.PRE-Box
CO.PRE(1);CO.PR
E(2) Organ.Header DOC-Layout COMT-1;COMT-2

Pres_FuncHeader_
1 STRUCT(6)

Presentation.ROUT
INE

Pr.CommFonc Comments.Autodoc
;Comments.Interpre
tation;Types.Comm
ents COMM (1)

CO.PRE-
CommFunc CO.PRE(11)

Instruction.COMME
NT

Pr.CommIdent
Comment.Indentatio
n COMM (2)

CO.PRE-
CommIdent;CO.PR
E-CommFBlo CO.PRE(10) DOC-Layout

Pr.Indentation

Presentation.Indent
ation PRES(1) CO.PRE-Indent FILE-6

Pres_Indent_1;Pres
_Bracket_1;Pres_Ali
gnCode_1;Pres_Pos
Else_1 STRUCT(6)

Pr.Instruction

Presentation.Simple
Instr

CO.PRE-
MultInstr;CO.PRO-
InstrLim

CO.PRE(4);CO.PR
E(7) PRES(3) Pres_LongLine_1

Expression.PRESE
NTATION;
Presentation.STRUC
TURES-CONTROL

Pr.LongLine Presentation.LgLine
;Presentation.Trunc
ation PRES (3);PRES (4) CO.PRE-LineLim

Pres_LongLine_1;
Pres_ComLong_1

Qa.Algèbre

Expression.IDENTI
TY

Qa.Branches

Instruction.CASE/S
WITCH-
CLASSIFICATION

Qa.Correlation

Expression.REGRO
UPING

Qa.Factorisation

OPTIM-SubExpr;
OPTIM-InvLoop

Expression.FACTO
RISING

Qa.Instrumentation
Qa.Interruptions

EMBED-
Proce_interrup

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 81

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Rule /
 Language
(Version) ADA (5)

ON-BOARD ADA
(3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Qa.OptionsCompil

EMBED-
OptionComp Prog_UseWarn_1

Qa.Performances Function.Conf OPTIM-9010
Qa.Pile

EMBED-
Stack;EMBED-
NbArg;EMBED-
StackSize;EMBED-
VarAuto

Qa.PortType
Types.Pre-defined DECL (3)

EMBED-
Types_int_float

Type.RedefTypeBa
se

Qa.RepérerPort
Qa.Ressources

 PORTAB-GUIFonts
GUI(4);GUI(8);GUI(
9);GUI(10)

Qa.ReutValide
 CP.DV-Reuse EMBED-Library

PORTAB-
DependAP Prog_PortCallSys_1

Qa.TestRetour KERNEL (2) CD.PRO-RetUse STRUCT(16) Routines.REPORT
Tr.Booleen Expressions.Compl

exCondition
Tr.BoucleSortie

Instructions.Exit
CO.PRO-
BreakLoop CO.PRO(9) FLC(5);FLC(7) CTRL-3

Instruction.FOR-
BREAK

Tr.CalculStatique Expressions.Static MISC(2)
Tr.Choix Instructions.Multiple

Choice INSTR (1)
EMBED-
switch_case CO.PRO(5) FLC(3)

Tr.ComparaisonStrict Instructions.Floating
Equality CO.DAT-CompFloat CO.EX(2) EXP(2) Variable.EQUALITY

Tr.ComparConst

CO.PRE-
CompConst

Tr.ControleRacc Expressions.Shortc
utCtrl EMBED-for

Tr.DoubleNeg Expressions.DbleN
egations

Tr.FonctionSortie SubProgram.Return SPROG(9) CD.PRO-Exit1 CD.SG(3) STRUCT(15) Routines.EXIT
Tr.Goto

Instructions.Goto INSTR (3) CO.PRO-Goto
CO.PRO(6);CO.PR
O(7);CO.PRO(5) FLC(9) Control.Goto STRUCT(18) Instruction.GOTO

Tr.MelangeType CO.TY-Conv CO.TY(4) DATA(10)
Tr.ModifCompteur

 CO.PRO-ForInd CO.PRO(9) FLC(6) CONTR-ForParam CTRL-2
Prog_ModForeach_
1

Instruction.FOR-
CONSERVATION

Tr.ModifCondSortie
 CO.PRO-ForCond CO.PRO(9) FLC(6)

CONTR-
ForCondition

Tr.ModifConst
 TYPE(3)

Constant.CONSER
VATION

Tr.ModifParSortie

 SPROG(4)

EMBED-
ArgValue ;EMBED-
ArgAddress

CO.PA(1);CO.PA(6
)

Function.ConstRefe
r STRUCT(17)

SystemVariable.CO
NSERVATION;Posi
tioningParameter.N
ATURE

Tr.ModifVarGlobal

SubProgr.Function;
SubProgr.GlobalVar MISC(5) CO.PA(8) PAS(9) COMT-4 STRUCT(17)

SystemVariable.CO
NSERVATION;Rout
ines.MODIFICATIO
N-PARAMETER

Tr.OrdreChoix Instructions.Enumer
ationChoice;Instruct
ions.OtherChoice INSTR (2)

!CO.PRO-
DefaultCase FLC(4);FLC(8) !CONTR-Default CTRL-1

Tr.OrdreParFormel SubProg.ParOrder SPROG(1) EMBED-ArgValue CO.PA(3) PAS(8) PARAM(1)

MANUAL

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

RNC-CNES-Q-HB-80-501

Page 82

Version 3

17 September 2009

Check the RNC site before using to ensure that the version used is the applicable version.

Rule /
 Language
(Version) ADA (5)

ON-BOARD ADA
(3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Tr.ParamOptionnel !SubProg.ParamBy
Default !SPROG (5) SPRO(5)

!PARAM(3);!PARA
M(4);PARAM(5)

Tr.Parenthèses Expressions.Priority
Order EXPR (1) CO.EX(1) EXP(1) INSTR (1)

Expression.PAREN
THESES

Tr.ParSortie SubProg.OutValue SPROG(6)
Tr.ProgDefensive SubProg.Defensive

Tests
Function.PrePostCo
nd ARGS-3;CTRL-8 STRUCT(16)

Tr.RecursifBord RISQ (4)
Tr.RecursifSol SubProg.Recursivit

y SPRO(4)
Routines.ITERATIV
E

Tr.Residus
 CD.SG(4)

Pres_DebugClean_
1

Tr.TestEgalite MISC(8)

STANDARDS REFERENCE PRODUCED BY:

Centre National d’Etudes Spatiales
Inspection Générale Direction de la Fonction Qualité

18 Avenue Edouard Belin
31401 TOULOUSE CEDEX 9

Tel.: +33 (0)5 61 27 31 31 - Fax: +33 (0)5 6 1 28 28 49

CENTRE NATIONAL D'ETUDES SPATIALES

Headquarters: 2 pl. Maurice Quentin 75039 Paris cedex 01 / Tel: +33 (0)1 44 76 75 00 / Fax: 01 44 46 76 76

Paris Trade & Companies Registry No. B 775 665 912 / Business Registration No: 775 665 912 00082 / Business Sector Code 731Z

