CNES
.
Lcnes STANDARDS REFERENCE
RNGC

Reference: RNC-CNES-Q-HB-80-501

Version 4
17 September 2009

MANUAL

PRODUCT ASSURANCE

COMMON CODING RULES FOR
PROGRAMMING LANGUAGES

APPROVAL of BN no. 39 dated 25/02/08 — BN no. 44 dated 08/09/08
Standardisation Office BN no. 54 dated 16/09/09

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 3
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

TITLE: COMMON CODING RULES FOR PROGRAMMING LANGUAGES

KEYWORDS: Common rule Generic Programming language

EQUIVALENT STANDARD : None

REMARKS: None

ABSTRACT : This document sets out the common rules for usingramming languages.

DOCUMENT STATUS: This document is part of the collection of app¥anuals in the CNES
Standards Reference. This document is affiliatedbtmiment RNC-ECSS-ST-Q-80 "Software Produc
Assurance”.

|

NUMBER OF PAGES: 83 Language : English (translated from the original
French)

SOFTWARE PACKAGES USED / VERSION: Word 2007

MANAGING DEPARTMENT : General Inspectorate and Quality Directorate (IGQ)

AUTHOR(S): DATE: 17/09/09

Jean-Charles DAMERY

© CNES 2009

Reproduction strictly reserved for the private use of the copier, not intended for collective
use (article 41-2 of Law no. 57-298 of 11 March 1957).

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 4
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES

17 September 2009

VERSION

DATE

PAGES MODIFIED

REMARKS

1

10/12/2006

Creation

Creation with the support of T. Leyd
(Virtual Reality). See “FEB 48/2006’
accepted in BN no. 22 dated 06/03/06.

Document accepted in BN no. 34 dg
25/06/07 for document to be
introduced in the RNC.

10/04/2008

Page 74§ 8.1

Following “FEB 77/2088Cepted in
BN no. 39 dated 25/02/2008,
correction of a minor error in the
summary table of rules.

02/06/2008

All

Change of nomenclature followihe |
ECSS benchmarking stage (former
reference "RNC-CNES-Q-80-501").

17/09/2009

Following “FEB 91/2009” accepted in
BN no. 54 dated 16/09/09 introducir|g
the new manual “RNC-CNES-Q-HB
80-535" in the RNC, the tailoring tog
in document “RNC-CNES-Q-HB-80-
501" is updated.

Check the RNC site before using to ensure that the version used is the applicable version.

‘ MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 5
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

L INTRODUCTION . e, 6
2. PURPIOSE ...t nsnnnnsnansnsssnsssnsnsnsssnsnsnsssnsnsnsnsnsnsnsnsnnnsnsmnnnnnnnnnnn 6
3. S COPE ...t ———————————————_______________]____111nnt1nnns 6
DO C UM ENT S e aeaeaaaeans 6
4.1 . REFERENCE DOCUMENTS .. ttutttttettsttntestsstnsessensensenes e sen e es ettt ..
4.2 . APPLICABLE DOCUMENT S . e utttuttttte et te et ea e e sa e aa e ea e aaa s enreea e snreen e snreaenrenenreaenren 6...
B TERMINOL OGY ooiitttutututteiuueiatesaeassuesasssssssssssssssssesssssesssesssssssssssesssssessssssssssssssssnsssssssssssssnns 7
o B CT 0 15157 = N /T 7
D 2 A BBREVIATION S . ..ttt ettt sttt eeees et tea e es e ea s eatesten s e saees s eateaeentes s eareattnreareatentenrenseraaansenrenees 7
5.2. 0. RUIE COUING ...ttt e e e e e e e e e e et e e et et b b bmmnans st e bbaa e e e e e e eeeaaaeees 7
5.2.2. Other abbreviations OF @CIrONYIMScccceeeiiiiieeeeeeeeeeeeeeeeer e eeeee e e e e e e e e e aaaes 9
6. COMPLIANCE WITH RELEVANT SPECIFICATIONSAND STANDARDS........... 9
T RUL Soooeeeeeeetieeeeteteeeeeeeeee et eaee e eeaeaeaeaee e ssseasseseaesssesseseesesssssssssssesssssssssnssssssennsnsnnnnnnnnnnnnnnnnns 10
7.1.CODE DESIGN/ ORGANISATION. .. eueu et eae e et et eeaes 10
A Oe] n) = I N 2 © 1 U N TP 17
R o) = R B 11 = = ST 21
AN B NPT 27
S T e =10 01 ST [38
7 0. ERROR MANAGEMENT ..ttt tuttutte st teas e et seaseaseasensen s en s easarearentear e enten e renren e renrenreneenns Rl
B 40NN, 58
AR T N =337 Y o =TT 62
28 T 16 7Y i P 65
8. SUM M A R Y ettt aaeas e e ss e sese st et e st s e e e et e et et et e s et nnnnnnnnnnnnnnnnnnnn 73
8. 1. RULESUMMARY TABLE ... oottt et 73
8. 2. "COMMON" TRACEABILITY et ttttuesttuenttsttnsestesten e testtsteasesesesteaeeees ettt reaeraenreaenaees 78

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 6
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

1. INTRODUCTION

The document "Common Coding Rules for Using Prognarg Languages" is affiliated with the document
RNC-ECSS-Q-ST-80 "Software Product Assurance"e$ictibes applicable rules for the programming
languages used by CNES.

2. PURPOSE

The aim of this document is to establish commoagtibr programming languages. These rules have been
established based on the “state of the art” andl¢issons learned” accumulated over the projedis T
document is essential when using a programmingukage for a CNES project. It is supplemented by
documents that are specific to each language.

3. SCOPE

This document applies to all CNES projects.

It must be adapted and/or completed by the Prjeactager and/or Quality Engineer as regards code
organisation, identifier nomenclature and any ofipecific rules according to established qualiteotives
that may be defined using the RD1 document.

This document is never used alone, but ratherad ursconjunction with the language document; for
example, for a JAVA project, common rules will mmbined with the rules presented in the JAVA manual
This combination and rule selection will be perfedrat project outset using a tailoring tool.

The tailoring tool is an interface that allows #ppropriate common rules and "language" to be teeldor
each project, according to the project's critemai(tainability, criticality, test effort). It isicluded in this
document; it may also be activated by clicking loa button below:

Lancer l'outil de tailorisatic

Remark: The language manuals used by the taildoimignust be in the current directory.

4. DOCUMENTS

4.1. REFERENCE DOCUMENTS

RD Identification Title
(RD1) RNC-ECSS-Q-ST-80| Software Product Assurance

4.2. APPLICABLE DOCUMENTS

AD Identification Title

None

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 7
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

5. TERMINOLOGY

5.1. GLOSSARY

A1

Term Definition

Library A group of functions or procedures wite@mmon theme.

An operation that provides a result. A functionsloet generally modify the valu

Function of its parameters.

A programming unit that groups together data aretatfjpns. Modules are

Module generally associated with a code file.

Operation A processing unit (a software procedurf@rmction that performs processing).
The programming area in which data may be usednlescope is local, data
may be used locally, in a function, for examplegwlit is global, the data may be

Scope used anywhere in the code.

An operation that does not produce a result, andlndroups together
instructions. Unlike functions, procedures may mpthie value of their

Procedure parameters.

Main program

An operation that starts program eienu

Sub-program

A function or sub-program.

Task

A control flow managed at operating systemalle& synonym of a process.

Tailoring

A selection of rules applicable to the project, evhinay involve adaptation or the

addition of new rules.

Thread

A control flow that is lighter than a task and mge at language level.

By "light", we mean:

- memory space is shared between the threadsrotags.

- changing thread context from one to anothersgefathan changing process

context from one to another.

5.2. ABBREVIATIONS

5.2.1. Rule coding

Each rule is presented in a table containing 4stefmnformation:

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnNnes _ Page 8
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
<|dentification> <rule title>

<Tailorisation>

<Type de Projet>

This table features the following fields:

* Rule identification as a <sub-chapter>.<rule codbe;sub-chapter is standard and is coded using a
standard mnemonic. The following coding is usedstdy-chapters:
Org: Code organisation
Pre: Code presentation
Id: Identifiers
Data: Data
Pro: Processing
Err: Error management
Dyn: Dynamic
Int: Interfaces
QA: Quality
OR: Other rules
* Rule title: this is the rule label.
» Tailoring: this is a field for defining 4 quantitet tailoring parameters. These parameters are
identified by a letter and are presented as follows
0 M=<m>R=<r>P=<p>V=<v>
o With
= m: a maintainability score from 0O to 3 (0 = theerbs little impact on
maintainability, 3 = the rule significantly impactsintainability)
= r:areliability score from 0 to 3 (0 = the ruleshdtle impact on reliability, 3
= the rule significantly impacts reliability)
= p: relative priority from 1 to 200; this informatiallows rules to be
classified (1 = the most important rule, 200 =Iggest important rule)
= v: verifiability score from 0 to 2 (2 = rule is algsverified (usually
automatically using an analyzer), 1 = rule is radiky verified (rule
compliance may generally be assessed by combinamgiait actions and
analyzer results), O = rule can not be verified).
These scores have been gathered from the lessongdeby the authors of this
document. They may change in accordance with forttieg lessons learned.
* Project type: this is another tailoring parameitedtefines the project category concerned by the ru
It must be selected from among the following vali&s-board, Ground, Any.
The rule is completed by 3 mandatory paragraphs:

* adescription,
* ajustification,
* examples.

Example of a rule:

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 9
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

id.NomDonnee

The name of a datum must be a common hame takeneiveryday

M=3;R=0;P=43:V=0

language; the plural form must be used if the datuanset or group.

Any

Description

Not Applicable

Justification

Enhances readability.

Example
In C++

TheStarTracker
TheResults
TheDaysOfTheWeek

5.2.2. Other abbreviations or acronyms

Term

Definition

RNC

CNES Standard Reference

6. COMPLIANCE WITH RELEVANT SPECIFICATIONS AND STAN DARDS

Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 10

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7. RULES

7.1. CODE DESIGN / ORGANISATION

Org.DonneesOper Data and operations must be grouped together inlegdo form consistent

M=3:R=0:P=41:V=0 packages, by using the available resources oatigulage.

Any

Description

This rule concerns all resources and all conceptwels proposed by the language used, in regard to
modularity.

Justification

Reinforces the priority and precedence of desigiviaes over coding activities.
Ensures consistency between software design ared cod

Example

In SHELL

This rule concerns scripts.
In ADA

This rule concerns units, packages and libraries.
In C++

This rule concerns classes, files and nhamespaces.
In JAVA

This rule concerns classes, files and packages.
In FORTRAN

An example of grouping data to manage a valve:

module VALVES

| ========= defining a valve
integer, parameter :: StatusOpen =1, &
StatusClosed =2, &
StatusTransitional =
type VALVE
integer :: ident
integer :: status
real(DOUBLE) :: flowrate
integer :: upstream, downstream
end type VALVE
========= global valve table, by ident ====
mteger parameter :: MaxNoValves = 1000

type(VALVE) dimension(MaxNoValves) :: VALVE_TAB LES
========= yalve file =====================
character(LEN—*) parameter :: ValvesFile = 'val ves.dat’

integer, parameter :: ValvesChannel =

end module VALVES

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 11

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Org.ModuleNom A module name must convey the conceptual unitttieatnodule represents

M=1;R=0;P=105;V=0

Any

Description

This rule concerns all types of conceivable modwdesording to the language concerned. It also
concerns associated files, their location, namefitmdxtension. It is a logical consequence &f thle
Org.DonneesOper .

The rule must be adapted to production environroenstraints, such as: The file management system,
the use of a code generator or compiler constraints

Correspondence rules between "design units" amp&tisource file" must also be defined.

Justification
Enhances source readability.
Example

In ADA
A file name uses the name of the Ada compiler tinait it contains.
If it is a separate unit, the file name has theespmefix as the parent unit.
A file name that contains a package (resp. a bsplggification has a suffix of _s (resp. _b) or has
the extension .ads (resp. .adb).
In SHELL
Scripts have a descriptive name that will use tioegssing name plus the extension '.sh'.
In IDL
The suffix ".pro" must be used for IDL source files
Define a suffix for batch files (for example, ".ihc

Org.Couplage Linking between modules must be minimised: useslinktween modules must

M=3:R=1:P=32:v=1 be uni-directional and be fewer than a limit settfe project.

Any

Description

Dependence between modules must be ordered anddintCircular links are prohibited. The number of
external variables (common to several compilatiomsy must be limited. References between modules
performed using instructions such as "use" or lidel' must be ordered and limited.

Justification

Significant linking complicates maintenance: changede to a module may require changes to all
dependent modules, and will, at best, require eessipn search to be performed for these modules.

Example

In ADA
Context clausesafth clause) in specifications for a package and/dvady define the entities
needed by the specification and/or the package.bdtigse clauses must not be used unless it is
strictly necessary.

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 12
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

In C and C++
Global "include" should be avoided; only truly uddfles should be included. A limit should be
created for the number of files included and thellef inclusion.
In JAVA
"Generic" imports (that use *) should be avoided.
In FORTRAN, PVWAWE and IDL
The use of commons should be limited.

Org.Masquage Data usage links should be avoided: read- and-adtess operations should b

19}

M=2:R=1:P=44:V=1 used instead (information masking and data encatsnlprinciple), when this

principle is not overly prejudicial for the languwagsed.
Any

Description

The only data that can be directly accessed argtaots.

In case a significant optimization of the executiiome is needed, the rule may be waived: directseto
member data is quicker than a function, particylathen the language concerned does not suppareinli
functions.

Justification

References to member data are uniform in the wisde code because functional notation must be used.
The mode of access to member data may be contréflectby facilitating maintenance and updating: fo
example, all updates for a given piece of data beagraced via its write-access method.

Example
In C++
Member data will be declared "private" and accgmsations will be defined:
Changing implementation of a class which is transpa rent for users:

I File "Person.h"
class Person {
public: // Read access
const Date& BirthDate();
int age();
private:
Date BirthDate_;
int age_; // Data derived from BirthDate_
h
#include "Person.|"
I File "Person.I"
inline Person::BirthDate() { return BirthDate_; }

inline Person::age() {return age_;}

A second implementation is defined afterwards to mi nimise occupied memory
space, even if this adversely impacts performance: the member data " age "
is deleted and age is calculated in the " age()" method using

"BirthDate_".

This change of implementation is transparent for us er classes because the

interface for the Person class is unchanged.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 13

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

In ADA
Package variables must be manipulated using orlptimitives provided in the package
specification. The variables themselves are detlaréhe package bodies and never in the
specification.

In FORTRAN 90
Only the named constants will have PUBLIC visililit

Org.Module The code lay-out of each module must be standardisehe project.

M=1;R=0;P=104;V=1

Any

Description

Code lay-out concerns general aspects of the medudenpilation units and files, data declaratiod an
the declaration of procedures, functions and atbevices.

Justification
Common code lay-out facilitates maintainability.
Example

In PVWAWE
A standard code lay-out for services and commédad $hould be defined. For example, each
service must contain:
- a header:
- the name of the service,
- the version,
- the author,
- the creation date,
- a description,
- a list of services used,
- the call mode, as well as a description of patens,
- the COMMONSs used,
- a list of local variables,
- the service's algorithm.
- the service body:
- the inclusion of files,
- the initialisation of return parameters,
- the declaration (initialisation) of local varleb,
- a presence and validity test for optional véeap
- processing,
- error labels,
- an end label.
In C++
It is recommended that public constructors andrdelrs be declared first.
A useful rule involves first establishing methodeggries and grouping the methods for a class
interface according to these categories (construdestructor, access, status, etc.). Each catégory
introduced by a comment, which gives its name éfteikeywordpublic (which may be repeated
more than once in C++). Method categories alwageapin the same order in all classes.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 14
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Org.MultiLang When more than one programming language are useddimject,
M=1:R=1:P=58:V=0 g)r:giz%%r;dence rules must be defined for the elesnexchanged between the
Any
Description

The same identifiers should be used in each larggwalgerever possible. Case should also be respected
(upper/lowercase). At the same time, when two r®ghing languages are mixed, thereby potentially
creating confusion, mixing should be limited, andile should be defined to differentiate the two
languages when they coexist.

Justification
This rule facilitates application maintenance agabability.
Example

In PVWAWE
Use the same variable names with the C/Fortran®dE programming languages.

In C and C++
C and C++ do not use the same mechanisms for ggsarameters. If a C function is called in C++,
its belonging to the C language must be highliglmettie identification of the function, and vice

versa.

Org.Duplication Code duplication must be avoided by intelligentyng the techniques available

M=3:R=1:P=24:v=1 at language level (passing parameters, using absjparations, using
metalanguages).

Any

Description

Each language proposes techniques for avoidingadtioin: these techniques should be studied on a
case-by-case basis, and the most appropriate tpehaelected. It is up to the programmer to chtuese
technique, but this is often a high-level decidivat may be traced back to the design stage. litiaald
this choice must account for the fact that excesahstraction may adversely impact program
maintainability. Consequently, in certain casesapeterisation is preferable to generic programming

Justification

Duplication must be avoided as it generates extstgs@and a high risk for inconsistency in mainteean
The various techniques proposed by the languageasaarequivalent: choosing an inappropriate
technique may produce code that is not very readabéfficient.

Example

In C, C++ and ADA:
Some "short" functions may generate more instrastia passing the parameters, calling the
function, returning, deleting parameters, thartlierfunctionality itself. Thénline instruction
suggests to the compiler that the function's aallecshould be replaced by function code expansion.
It may also be useful to use this mechanism fargelr function called only one time.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 15

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

In C++ and JAVA:
Function model and polymorphism are two concurtectiniques for generic programming. One or
the other should be selected after examining tharadges and disadvantages offered on a case-by-
case basis.
In C++:
Example of factorial calculation using a functioodhel:
Il recursion is used to iterate
template<int n>
inline int FACT () { return n * FACT<n-1>() ;}

I/ specialisation is used to stop recursion
inline int FACT<0> () { return 1 ;}

Org.Principal The main program must be limited to the higheselleontrol flow: creating
PP tasks, initialisation, sequencing. It must not eamprocessing algorithms or

M=0;R=1,P=94;V=0 calculations.

Any

Description

The main program must be short. It must summahisgtocessing process. It handles activation of

general initialisation processing, of one or mar@cpsses required to attain a set target, and raanag
errors returned by called sub-programs.

Justification

Program understanding is facilitated if the maiogoam contains only the software control flow.
Example

In FORTRAN
PROGRAM DEMO
........ declaration of variables
CALL INIT1
IF (condition) THEN
CALL PROC1
CALL CONT1
ELSE
CALL PROC2
ENDIF

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 16

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Org.Matériellndep Codes that have dependencies with hardware or topgesystem must be kept

M=2:R=0:P=84:V=0 separate from the rest of the software code.

Any

Description

Dissociate as much as possible the hardware integad operating system from the software being
developed. This rule must be applied, even if adgeneous module need to be divided in order to
extract the non-portable functionalities.

Justification
Enhances portability.
Example
Not applicable.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 17
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
7.2. CODE LAY-OUT
Pr.Indentation Code must be indented. A convention for represgrdantrol structures must be

M=2:R=0:P=74:V=2 defined and respected.

Any

Description

The code created must use uniform indentation tirout the entire project. The recommended value for

indentation is 3 characters. The value used fagntattion may be conditioned by the code editing,
presentation and printing tool used for the projdatonvention for control structures lay-out malsto
be defined.

Justification
Indentation enhances readability and improves codgrehension.
Example

In IDL:
Control structures are explicitly written in IDL:
Example of presentation of WHILE
WHILE (index GT 3) DO BEGIN
index = index + 1
PRINT, “INDEX = *, index
ENDWHILE

Pr.Aeration The text in a program must be well-spaced. Opesatod operands must be

M=2:R=0:P=75:V=2 separated by spaces.

Any

Description

Unary operators must be followed or preceded by tpeerand without spaces. Binary operators must
feature spaces on either side.

Justification

Ensures uniform program presentation and allowsyun@erators to be distinguished from other
operators.
Enhances readability.

Example

In C:
Result=x+vy;

Pr.Instruction There should be no more than one instruction per li

M=2;R=0;P=76;V=2

Any

Description

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 18

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Long instructions may extend over several linesy timust therefore be cut:
» before: reserved words, operators, assignment dgmiguening parentheses
» after: a comma, semi-colon

Justification

Ensures uniform program presentation and allowsyun@erators to be distinguished from other
operators.
Enhances readability.

Example

In FORTRAN 77
The character "&" is used to indicate followingdifin column 6).
In ADA
THE_ACCUMULATION_OF_TWO_LONG_IDENTIFIERS
:= THE_VALUE_OF THE_FIRST_IDENTIFIER
+ THE_VALUE_OF THE_SECOND_IDENTIFIER;

Pr.LongLine The maximum number of characters in a line of seearle is less than a limit

M=2:R=0:P=77:V=2 defined for the project.

Any

Description

The limit must be established. Firstly, it must@aut for potential compiler limits. Secondly, it stu
ensure that the project entry, display, analysikm@inting resources all allow the code to be rgadi
handled and consulted.

A high limit will be set to allow the programmer t@adily enter code, insomuch as the rules proposed
here create long lines: descriptive name, prefixgimg by association, parameter alignment, indiemat
etc.

This also applies to comments.

Justification

Certain compilers ignore the characters that exeggigen line length. After a certain length, Idimgs
are not easily displayed and printing is truncagstting a maximum code line length in the progac
high value, but one that is below set limits, fisgies compilation, and source handling and coasait.

Example
Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes _ Page 19
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Pr.CartStd A standard comment box defined for the project nhestised to comment on th

M=2:R=1:P=50:V=1 header of each module and the definition of anaipmer.

Any

Description

This header presents the essential logic behinthdaule or the operation, as well as critical
programming aspects (for example: pre-conditiongédls, processing exceptions, possible side &ffec
portability constraints, task synchronisation cdiods, etc.). A header may be addressed to trsoper
using or maintaining the module.

The exact contents of headers should be set ¢eimitial conventions of each project.

Justification

This rule results in a more uniform, readable aaghiainable code.
It guarantees the existence of at least one hgaddile.

Example

InC
File header comment (c or h):
I T T I
I PROJECT: <>
/l APPLICATION: <>
/I AUTHORS: <>
/l CREATION DATE: <>
/| DESCRIPTION: <>
I

TN N
Function header comment:

TN N

/I FUNCTION NAME: <>

/I ROLE:

I INPUT PARAMETERS:
I UPDATE PARAMETERS:
/ RETURN CODE: <>

TN N
Pr.CartDonnée Each data declaration must be commented.
M=2;:R=0;P=78;V=1
Any
Description

Variables must be presented and commented, partigthose with critical functional importance.
Justification

Maintenance is significantly facilitated.
Example

Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes N Page 20

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Pr.CommFonc Comments must be functional and not duplicate tliec

M=3;R=0;P=42;V=0

Any

Description

Comments must serve exclusively to provide addaiamformation to the reader; they must supplement
the information that the reader finds in the cddelf, such as the names of types, variables, forma
parameters, loops, blocks and exits, in the intttidn of temporary variables or sub-types, andsimg
qualification or renaming. The additional infornmatiprovided by the comment must be significant: a
specific feature of the variable, the purpose eflitock, the originality of the algorithm, etc.

Comments must not be used to paraphrase or to npatar inexpressive names of identifiers, paranseter
or functional blocks. The goal is therefore noat@in a certain percentage of comments, but rasher
have onlyuseful comments.

Comments provide the answers to "why" while theeciodlicates "how".

Comments may also be non-existent if the codepsessive enough on its own.

Justification

Limits double maintenance and code/comment disa@es.
Example

Not Applicable

Pr.Commldent Comments must be located in the same area asl¢éivamécode, and indented g

—

M=2:R=0:P=79:V=2 the same level as this code.

Any

Description

For short assignment instructions, comments shioeilplaced at the end of the line.

In languages such as C, C++ or JAVA, the seriedasing brackets does not indicate to which opening
bracket it corresponds. Incorrectly positioned iclgdrackets are a frequent cause of errors. Cortgamen
allow ambiguity to be avoided.

Justification
Enhances visibility.
Example

In C:
In C or C++, each closing bracket can have comments
while (Condition)
{
Processing_1;
if (Condition_2)

{
Processing_2;
} /1 end of case 2
} /1 end of processing loop body

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 21

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7.3. IDENTIFIERS

Id.ldentSignif Identifiers must be descriptive.

M=3;R=1,;P=25;V=0

Any

Description

Identifiers should be chosen for their explicitnessbreviations are prohibited unless found in the
project glossary or an integral part of the progdture.

Justification

Attempt to have source language that is as closatioral language as possible, which may be readily
understood and which is unambiguous.

Example

In FORTRAN 77
It is often difficult to apply this rule in FORTRANY7 (symbolic names limited to 6 characters). If
portability and/or security constraints allow,strecommended that the features of the "extended
FORTRAN 77 standard be used, in order to code naisiag 31 characters.

Id.IdentRegle Identifiers must be simple or created by concaiegateveral terms; the same

M=2:R=1:P=51:v=0 concatenation, use of determinants and upper avetéase letters must be

common to all identifiers used in the project.
Any

Description

Rules for naming identifiers are defined at theilieigg of the project. They are customised for the
project and concern all activities. Identifiers inoe differentiated from other words in the langraéog
particular, reserved words).

In strict FORTRAN 77 (symbolic names limited tolacacters), rules may be defined as explicitly as
possible while being compact.

Justification
Enhances readability.
Example

In ADA
1. The different words that make up an identifier separated by an underscore
A_TELEMETRY_BLOCK, THE TELECOMMAND_BATTERY, etc.
2. Global variables are in uppercase letters, leaahbles are in lowercase and their names reqirese
what they identify.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501
é Cnes Page 22
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Id.NomDonnee The name of a datum must be a common name takeneiveryday language;

M=3:R=0:P=43:V=0 the plural form must be used if the datum is aosefroup.

Any

Description

Not Applicable
Justification

Enhances readability.
Example

In C++
TheStarTracker
TheResults
TheDaysOfTheWeek

Id.VarSignif The name of a variable must convey its meaning.

M=3;R=1,P=26;V=0

Any

Description

The name of a variable must fully identify saidighte. It must both express what the variable & an
identify the variable unambiguously. A nhaming rel®uld be adopted for variable identifiers and the
specifiers used. For example: an article or posaesasljective for a variable, a verb phrase to espia
true or false status for a Boolean. In additiorchezaariable name should have at least 3 charaetecspt
loop indexes.

Justification
Enhances source readability and the distinctiowéen variable identifiers.
Example

In ADA:
THE_TM_STATUS: A_ CORRECTIVE_CODE;

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 23

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Id.VarType The name of a variable may also convey its typiiraar scope.

M=2;R=1;P=41;V=1

Any

Description

This rule essentially concerns weak typing langsagehose for which static control is not strict.
Justification

For these languages, this rule improves code gualit
Example

In PYWAWE

- prefix local COMMONSs to a module usi@).

- prefix COMMONSs shared with other modules us@@_

- prefix the name of constants usi@§T _

- prefix structure types usings

In IDL:

Variable are named according to the r@ape_Type Desc.
"Scope" represents the scope of the variable:
Global variable: use "g_"
Local variable: use "l_"
Variable belonging to a global common block: use "C G "
Variable belonging to a local common block: use "CL
Member data of an object: use "m_"
"Type" represents the type of variable:
BYTE type: use "b"
INTEGER type: use "n"
Unsigned LONG type: use "ul"
Signed LONG type: use "I"
FLOATING type: use "f"
DOUBLE type: use "d"
COMPLEX type: use "c"
STRING type: use "s"
OBJECT type: use "0"
POINTER type: use "p"
STRUCTURE type: use "st"
"Desc" is the description of the variable.

Id.ConstSignif The name of a constant must convey its meaninganiis value.

M=3;R=1;P=27:V=0

Any

Description

The name of each constant must follow the namitegsrdefined for the project, except when being
reused. In particular, these rules must allow #er to readily distinguish between constants and
variables. The names of constants should be wiitttiPPERCASE letters, and each name should
represent what it is identifying. This rule als@kgs to constants defined in enumerated typesrand
macros in the C and C++ languages.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes - Page 24
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Justification
Enhances readability.
Example
In ADA:
SIZE_OF BUFFER: constant := 100; -- rather than HUNDRED;
Id.ClasseType Though not dictated by the language, the nametygeor class must be a

M=3-R=0:P=40-V=0 general term that identifies a group or categorgai.

Any

Description

Not Applicable
Justification

Enhances source readability and the distinctiowden type identifiers.
Example

In ADA
type A_CORRECTIVE_CODE is array (1 .. NB_OF_BITS) o f BOOLEAN;
InC
typedef struct
{
int positionX;
int positionY;
} tPosition;

Id.Pointeur If the language supports pointer or reference quiscéhe name of a pointer or

M=3:R=3:P=4:V=0 reference must convey the semantics of the oljetentifies (pointed or

referenced object).
Any

Description

Not Applicable
Justification

Enhances readability and the distinction betweentgoidentifiers.
Example

In ADA:
type A_LINK _PTR is access A_LINK ;
PTR_CURRENT : A_LINK_PTR ;

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 25
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Id.Procedure Procedure names must be infinitive verbs or vedogs that indicate the action
M=3:R=1:P=80:V=0 to be completed.
Any
Description

The verbs must be active verbs. This rule also@mscmacros in the C and C++ languages. When glata i
masked, the write-access methods will have a steriafix.

Justification
Enhances readability.
Example

In C++:
Definition of a Complex type and the access methodbe real
and imaginary parts of the complex number:
class Complex {
{
public: // Access

int virtual obtainRealPart(void)
/I Real part of complex number

{

return realPart_;

}

int virtual obtainimaginaryPart(void)
/I Imaginary part of complex number

return imaginaryPart_;

}

Id.Tache Task names must be composed using procedures ants @ssociated with and

M=3:R=2:P=19:V=0 used to trigger or sequence the task.

Any

Description

Associated procedures are operations called btaghke when the task is very functionally consistent
only one operation is called by this task.

Justification
Enhances readability.
Example

InC:
void GetStarAngle () is the procedure called cyclically each secoractire the angle with a

given star; the associated task will be called:
GetStarAngle_1s

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes Page 26
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
In ADA:
task THE_BUFFER is
entry TAKE (THE_ELEMENT: out AN_ELEMENT);
end THE_BUFFER;
Id.Fonction Functions must be named using a houn that repseentalue supplied by this

M=3;R=1,;P=29;V=0

function. For a function that returns a Boolearueak verb phrase should be
used to express a true or false status.

Any

Description

This rule also concerns macros in the C and C+guages. When data is masked, the read-access
methods will have a standard prefix.

Justification

Enhances readability.

Example
In ADA:

function SQUARE_ROOT (OF: in A_REAL) return A_REAL ;
function ALREADY_EXISTS (THE_PATH: in A_PATH) ret urn BOOLEAN,;

Id.NomParFormel

M=3;R=1;P=80;V=0

Any

The name of a formal parameter must convey théoakhip between the
parameter and the operation concerned.

Description
Not applicable
Justification

Enhances readability. Facilitated reading must pakeedent over facilitated writing.
A more explicit semantic form is obtained as altesu

Example
In ADA

procedure CREATE (WITH_THE_STRING :in STRING;

THE_WORD - out A_WORD);

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
C n e S - Page 27

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7.4 DATA

Don.Declaration All data used must be explicitly declared.

M=3;R=3;P=1;V=2

Any

Description

This rules concerns permissive languages that allesiarations to be omitted.
Declaration instructions will be specified (publgjvate, static, etc.).
In addition, all data declared must be used.

Justification
Improves maintainability and reliability.
Example

In FORTRAN 90
The instruction IMPLICIT NONE is mandatory.
In C++
Declaration instructions will not be used by defaul

Don.Separee Each piece of data must have a separate declaration

M=2;R=1;P=45;V=2

Any

Description

One line will be used for each declaration.
Justification

Each declaration will be able to be commented r@sait.

Example
In C or C++
Incorrect
float sBeg sEnd, sAverage; // Speed calculation v ariables.
Correct
float sBeg; /I Speed at the beginning of acc eleration.
float sEnd; /I Speed at end of acceleration.

float sAverage; // Average speed.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes N Page 28

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Don.Typage Data must be systematically and explicitly typed.

M=3;R=3;P=2 ;V=2

Any

Description

Types must correspond to the data variation domaims most "limited" definition domains will be uke
in accordance with data semantics.
All allocation directives must be explicitly speeid.

Justification

An absence of explicit typing may indicate a prognang anomaly.
Assigning a type by default may create errors amthpility issues.

Example

In ADA
integer NBNODE:= 10
type(NODE), dimension(:), allocatable :: TABNODE
integer, dimension(:,:), allocatable, target :: C ONNECTIVITY
In FORTRAN 90
Use the allocated declaration form.

Don.TypeAnonyme Anonymous types must not be used.

M=3;R=2:P=32;V=1

Any

Description

An anonymous type is a type that is implicitly deeld through data declaration, but that is notatedl
as such as a type.

Data declarations made using semantically-equivaeonymous types are not allowed.

In C, compound literals, whose scope in a funcdimited to the enclosed instruction block, aags
should be avoided.

Justification

Eliminates type incompatibility problems.
Enhances scalability and type reuse.

Example
In ADA
Replace:
THE_CHESSBOARD:array (1..8,1..8) of A_SQUARE;
THE_OTHER_CHESSBOARDarray (1..8,1 .. 8) of A_SQUARE;
by:
AN CHESSBOARLO s array (1..8,1..8) of A _SQUARE;

THE_CHESSBOARD: AN_CHESSBOARD;
THE_OTHER_CHESSBOARD: AN_CHESSBOARD;

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 29
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Don.Localite

Local data declarations are preferred over morbajldeclarations: data that is

M=3;R=1,;P=30;V=1

local to a module are preferable to global dataméd parameters are preferable
to global data, local data for an operation asfqured over module-level data,

Any

and local data for an instruction block are prdférao local data for an
operation.

Description

This rule is very general and must be applied altogrto context and language.

Justification

Readability is enhanced if variables are limitedéope (said variables are not relevant outsidbedf

scope).

The use of more global variables is always mord#yosterms of memory use and access time.

The use of more global variables renders the aegkedeneric and more difficult to maintain or reuse
Use of more global variables makes the code |disble.

Where appropriate, the compiler may avoid useldssadions or code: local data that is not assigeed
not allocated; local data that is not reused iscatitulated (the code that assigns it is not geedyaT his

is particularly effective when conditional compitat is used.
This is to limit the scope of the variables as maslpossible.

Example

In FORTRAN or IDL

The COMMON mechanism should be avoided in orders® parameters
In SHELL or PERL

Environment variables should be avoided

In SHELL

Local variables for a function should be definsthg a typeset or a local attribute
In C++ or JAVA
Static data should be avoided

In C++

An example of an itemised declaration:
void f4 (int &x, int &y, intz []) {

/I PreProcessing
f(x);
g ()

/I Development of local 1
int locall = x+y ;

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes _ Page 30

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Don.Invariant Constants must be defined for entities whose valirevariant.

M=2;R=1;P=52;V=1

Any

Description

If an invariant is used only once (for a given setitd, the definition of a constant may be debated.
Justification

This rule allows invariants to be guaranteed, tweenhancing reliability. In addition, code is not
impacted if the value of the constant is modifileatgtion of the modification and uniqueness). This
facilitates adaptability and scalability.

Example

In ADA
package PACKAGE_EXAMPLE is
MAX_LINE_LENGTH: constant := 255 ;
type A_LINE_LENGTH is range 0.. MAX_LINE_LENGTH;
MY_CARD_LENGTH: constant A_LINE_LENGTH:= 80 ;

Don.Enumeration The use of constants or symbols must be prefeemrahterative, if the language

M=2:R=2:P=36:V=1 allows) over the use of whole numerical data. Tée af whole numerical data

must be essentially limited to simple calculatiorcounting.
Any

Description

All constants (including table dimensions) musnbened using symboils. Literal constants are praddbit
except in special cases such as increments of 1la@bnstants must be typed, if the language alldiv
the language proposes several mechanisms for inepligmy constants, the mechanism that is best
adapted to the context should be used.

Justification
This technique ensures code consistency, scalehild reusability.

Example
In ADA
Replace:
type AN_INSTRUMENT is range 1.. 4;
-- 1 corresponds to CAMERA
-- 2 corresponds to ALTIMETER
-- 3 corresponds to INTERFEROMETER
-- 4 corresponds to LASER
by:
type AN_INSTRUMENT is (CAMERA, ALTIMETER, INTERFER OMETER, LASER);
In C and C++

The#define instruction does not exit in the C language, buather a command for its pre-
processocpp: #define allows a literal constant to be replaced by itsigah the source code. The

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 31

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

compiler works on a post-processing version ofsthace and therefore does not know the original
literal constant. Declaring enumerations increaisegossibilities for control.
Incorrect example:

#define WHITE O

#define BLACK 1

#define RED 2

#define GREEN 3

#define BLUE 4

int aColour;

aColour = RED; // correct for compilation

Correct example:
typedef enum { white, black } tColourl ;

typedef enum { white, black, red, green, blue } tCo lour2 ;
tColourl aColour = red; // justified refusal for co mpilation
Don.Structure When a conceptual object must be implemented asaedata, this data must be

M=3'R=2-P=18'V=0 grouped in a structuring entity (class, structueeprd, type) according to the

possibilities provided by the language.

Any

Description

Not Applicable
Justification

This ensures enhanced consistency between uratsdet
Example

Not Applicable

Don.Homonymie The use of homonyms must be avoided except in cdsaserioad or explicit
M=2:R=1:P=46:V=1 redefinition.

Any

Description

A variable that is local to a sub-program musthte the same name as a compilation unit global
variable or an external variable.

Justification

Enhances readability.
Avoids visibility conflicts involving rules that nygbe complex.

Example

InC
Using naming rules makes it possible to distinglistween local variables and static variables,
thereby avoiding this type of error, which is oftifficult to detect.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 32

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Don.Initialisation Variables must be initialised before being usedtierfirst time.

M=2;R=3;P=11;V=2

Any

Description

All variables must be initialised, either when d@&el, or before being used for the first time.dégble,
variables should be initialised when declared: thiscerns, in particular, all simple variables€ggr,
float, char, etc.), pointers and references, lsaghbles and environment variables used by thgrpm
and the scripts.

Initialisation must be performed at declaratiorthé variable can be initialised with a significaatue.
Note that some languages may impose or verify bheimitialisation, specifically for local varialde

Justification

Avoids side effects and potential portability prexis. If the variable is not initialised it amoutdausing
the memory initialisation performed by the operatiiystem, which may be different from one computer
to another.

Example

In FORTRAN
When COMMON is used to pass variables from oneieete another, it must always be initialised
by the caller.
InC
const int MAX_STRING = 80;
int Number_aircraft = 0;
char Firsthame[MAX_STRING]="";
const int SIZE = 10;
int Tab[SIZE]={1,2,3,4,5,6,7,8,9, 10};

Data.PointeurNonAff If the language supports the pointer concept, vehpainter is not associated with

M=2:R=3:P=13:v=1 a specific object at declaration, a comment musti§pthe object that will be

associated with it and, if the language allowdiatse it to null.
Any

Description
The purpose of this rule is to document the ugeoafters and references with a complicated dynamic.
Justification

One of the most frequent causes for error whergysinters or references is the use of a null egies.

Example
In JAVA
Point P1 ; // First end of segment
/I Will be assigned as soon as the segment is creat ed
Point P2 ; /I Second end of segment
/I Will be assigned as soon as the segment is creat ed

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes I Page 33
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Segment S = new Segment () ;

P1=S.First ()
P2=S.Last () ;

Don.LocalUnique Each local datum must have a unique use.

M=2:R=0;P=80;V=0

Any

Description
The definition of general data reused at variouatpan the code should be avoided.
Justification

Code is more consistent.

This reduces the risk of side effects due to previaitialisation of the variable.

Increasing local data does not adversely impadbpaance: recent compilers know how to effectively
manage associated resources.

Example
Not Applicable

Don.Utilisee All data that is defined must be used; a datumithao longer used must be
M=2;R=0;p=81;v=2 | deleted

Any

Description

Local data created for a specific need should betetbwhen this need ceases to exist. This faatitay
respecting rule Don.TypeAnonyme .

Justification

A variable that has been declared but not use@sgponds to useless code that adversely impacts
readability and pollutes the program

Example
Not Applicable

Don.TablePrincipe The processing principal (line x column or columime) for double entry tables
M=2:R=2:P=37:V=0 must be defined.

Any

Description

The principles for using double entry tables mstlefined; how they should be declared, and which
indexes correspond to lines and columns.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 34

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Justification

Without a specific rule, confusion may arise betwieo developers: one sees the double entry table a

is and the other sees it as being transposed.
In most languages, the addressing mode for tabfeezits skews performance according to whether the

table is browsed line-by-line or column-by-column
Example

In FORTRAN
Process tables by column rather than by line
Use (processing a column in the innermost loop):

DO J=1,N
DO I=1,N
A(1,9) = B(1,J) * 5.0
END DO
END DO
rather than (processing a line in the innermogp)oo
DO I=1,N
DO J=1,N
A(1,9) = B(1,J) * 5.0
END DO
END DO
In PVWAWE
Loop indexes in a table beginning with columns tah lines.
In IDL
For multi-dimensional tables, loop indexes by brioggghrough the first indexes in the innermost
loops
Don.TableOper Global operations for tables (initialisation, copyplication, comparison) must
M=2:R=2:P=38:v=1 giig)terformed using standard primitives providedhaylanguage, when they
Any
Description

Not Applicable
Justification

Code is more readable.
Code is more efficient.

Example

In C and C++
The functions memset, memcpy etc. should be used

In IDL:
The ARRAY_EQUAL function allows for quick comparis@f the contents of 2 tables, without

having to use FOR loops or WHERE instructions.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 35

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Don.ChaineOper Global operations for character strings (initiciisa, copy, duplication,

comparison, search, modification) must be perforosdg standard primitives

M=2;R=2;P=39;V=1 provided by the language, when they exist.

Any

Description
Not Applicable
Justification

Code is more readable.
Code is more efficient.

Example

In FORTRAN 77:
LEN and INDEX functions are used.

InC:
<string.h> interface functions (strcpy, strcmpgatr etc.) are used.

In C++:
The String type from STL will be used.

In PERL:
Comparing character strings requires the use dtdtstl alphabetical operators (eq, It, gt, le, ge)
rather than standard numerical operators (==, <=>>=). Using numerical comparison operators
on character strings does not cause a syntax(@mtyra warning), but will not return a correct

value.

Don.AllocDynbord Dynamic memory allocation is prohibited.

M=0;R=3;P=30;V=1

On-board

Description
All instructions that lead to dynamic memory allbea or deallocation are prohibited.

Justification

Allocation and subsequent deallocation may leaignoificant memory fragmentation. To avoid CPU
load problems, it is clear that bringing a procasdoard to continuously defragment the memoryots n

acceptable.
Example:

InC:
Use of dynamic memory allocation mechanisms thatnoalloc/free (standard library) is prohibited

in on-board real-time applications.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501
é Cnes Page 36
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Don.AllocDynSol If the language supports the concept, dynamic mgdmcation must be used

M=0:R=2:P=61:V=0 sparingly, and with caution.

Ground

Description

The project may choose to prohibit dynamic memdigcation, or to limit it to certain compilation s
in order to manage memory usage.

Justification

Dynamic allocation requires an analysis of the i@pfibn's dynamic, and may lead to memory
fragmentation problems that may adversely affedopmance

Example
Not Applicable

Don.AllocEchec If the language supports the concept of dynamaxation, the potential failure

M=0:R=2:P=62:V=1 of a memory allocation request must be systemétipabvided for.

Ground

Description

A dynamic memory allocation request may fail assult of insufficient available memory.
In all cases, a process must exist in the evefdilofe.

Justification

A memory allocation error is a serious error.
It is generally very difficult to trace the causleg(failure of the allocation request) from onehaf
effects.

Example

In C++
The following possibilities exist to prevent thekriof allocation failure:
Define a global error processing function, thaiasitioned as a function called implicitly wheew
fails, due to the error management primitiget'new_handler".
Redefine thenew operator for a given class: this technique isar@mmplicated, but creates
processing adapted for each class.
Use the exception of the standard library "badcdllo
Test the return value of a call to new and pro¥idean ad hoc process if a null value is returned,
which corresponds to an allocation error. In tlise; thenew operator should be used with the
(nothrow) instruction to avoid throwing an exception.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 37

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Don.AllocLiberation All allocated memory must be freed at the same epiual level.

M=1;R=1,;P=53;V=0

Ground

Description

All memory area allocation involves explicit dealfdion as soon as possible and at the same coateptu
level: operation, service, module, class. It shdaddhoted that this rule is not applicable for lzanges
such as JAVA, which automatically free memory.

Justification

Systematic deallocation saves memory resources.
It is easiest to free memory at the conceptual lavevhich this memory was allocated.

Example

InC

If a module offers a memory allocation functiorsfitould also offer a function to free memory.
In C++

If constructors allocate memory, a destructor freesnory.

Donc.AllocErreur An error that occurs during processing must noseaunemory to not be freed.

M=0;R=2;P=63;V=0

Ground

Description

A code sequence that leads to an exception risgpialg the code that frees resources.
Justification

Allocated resources must be freed, regardlessdd sequence.
Example

In C++
An example of a function interrupted by an exceptitat leads to resources not being freed
void Exceptionl (void) {

try {
tA*pA;

/I Local allocation
pA = new tA (0);

/I Processing interrupted by an exception
...

/l Resource freed
delete pA ;

}
catch (MyException e) {
/I ... Processing exception
}

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 38

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

}
An example of a function throwing an exception withfreeing resources
void Exception2 (void) throw (MyException) {
tA * pA;
/I Local allocation
pA = new tA (0);
/I Processing throwing an exception
if (true) throw MyException (1);
/I Resource freed
delete pA ;

7.5. PROCESSING

Tr.TestEgalite Use of the equality or difference test must beaepll by inequality where
M=0;R=3;P=45;v=1 | POSSiPIe.

Any

Description

Equality or difference tests are difficult to maeaghen browsing intervals.
Justification

Enhances robustness.
Example

InC:
Replace:
for (inti=0 ; i 1= MAX ; i++)

by:
for (inti=0 ; i < MAX ; i++)

Tr.ComparaisonStrict Strict comparison (equality, difference) betweerafing numbers (real, comple

M=0;R=3:P=46:V=1 must be replaced by inequality.

Any

A

Description

Equality between reals will never be tested usimgguality operator, but rather by framing their
difference.

Justification

The strict equality of two real-type operands doetsmake sense.

Example
In ADA:
Replace:
if MY_REAL = YOUR_REAL then
by:

if (abs(MY_REAL - YOUR_REAL) < EPSILON) then

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 39

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

where EPSILON represents machine accuracy.

Tr.ModifConst The value of a constant must not be modified.

M=3;R=3;P=3;V=2

Any

Description

This rule concerns languages for which the conokfitonstant” is not defined.
In C and C++, casting mechanisms that might mathéyvalue of a constant will be avoided.

Justification
Constants represent invariants that must be resghect
Example

In C or C++
Avoid the following code:
const double pi=3.1415926 ;
const double * ptrl = & pi ;
double * ptr2 = (double *) (ptrl) ;
*ptr2 = 3

Tr.ControleRacc If the language supports the concept, shortcut$arficontrol must be used

M=2:R=2:P=35:V=1 whenever appropriate.

Any

Description

Shortcut control forms are specific to the langsa@ed correspond to common specific cases of dontro
forms: iterative forms, decisional forms etc.

Justification

Enhances readability.
Speeds code execution.

Example

InC:
Use the instructiorfor rather tharwhile , when possible.

Use a switch rather than a seriesfof—else if if the conditions concern the enumeration of the
values in a whole expression.

In ADA:
Prefer:
if Y/=0andthen (X/Y)=10then. --OK
over:
if Y/=0and (X/Y)=10then ... -- CONSTRAINT _ERROR
POSSIBLE

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 40

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Tr.Choix A choice instruction must be used rather than plgmonditional instruction

M=2:R=0:P=70:V=1 when there is more than one alternative.

Any

Description
Not Applicable
Justification

For a multiple choice, the compiler builds a tatfidranching addresses for each case (which iskpess
if the values to be tested are numerically conseg)ljtso that the access time to each case doesnot
Enhances code readability and self-description.

Example

In ADA:
type A_RESPONSE is (YES, NO, MAYBE) ;
THE_RESPONSE_OF_THE_OPERATOR := OPERATOR_RESPONSEF(THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF THE_OPERATOR is

when YES => PROCESS;
when NO =>DO_NOT_PROCESS;
when MAYBE => DECIDE;

end case;

In FORTRAN 77:

Avoid using calculated goto, which is less readadhel use nested if elseif
In C and C++:

When there is more than one alternative possisie aswitch/case instruction rather than an
if/else ifl/else instruction

Tr.OrdreChoix When using a choice instruction, all possible casest be provided, preferably

M=3:R=2:P=17:v=1 explicitly and in the "logical" order of the cases.

Any

Description

This means, among other things, that processirdebault cannot be used.
Justification

Improves software maintainability and reliability.
Example

In ADA:
Prefer:
type A_RESPONSE is (YES, NO, MAYBE);
THE_RESPONSE_OF THE_OPERATOR := OPERATOR_RESPONSE(THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF THE_OPERATOR is
when MAYBE => DECIDE;

when YES => PROCESS;
when NO =>DO_NOT_PROCESS;
end case;

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 41
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

over.
type A_ RESPONSE is (YES, NO, MAYBE);
THE_RESPONSE_OF _THE_OPERATOR := OPERATOR_RESPONSH-(THE_OPERATOR =>
ACTIVE_OPERATOR) ;
case THE_RESPONSE_OF_THE_OPERATOR is
when YES => PROCESS;
when OTHERS =>DO_NOT_PROCESS;
end case;

Tr.Goto The unconditional branching instruction (goto) maisly be used in very limited

M=3:R=3:P=6:V=2 and specific cases.

Any

Description

Goto must be used only for error processing. lfliimguage supports exception processing, as doés AD
JAVA or C++, the use of goto is prohibited.
It is prohibited to perform backward branchingjroa structured instruction such as a loop.

Justification

The instructiorgoto often leads to a destructured program, which am&e complexity and the risk for
errors.

Example

InC

Use of goto is tolerated for error processing:
while(Condition_1)

{
Processing_1;
if (Condition_2)
{
goto Error
}
Processing_2;
if (Condition_3)
{
goto Error
}
}
goto End;

Error: Processing_Error;

End: ...

However, the long jump (set jump, long jump) istpbited.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 42

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Tr.BoucleSortie A loop must feature a unique nominal exit.

M=3;R=2;P=16;V=2

Any

Description

A well-structured loop algorithm must not requisysral possible exits. It is the condition that mus
potentially test the different possibilities foténrupting the loop.

Use of the unconditional exit instruction can berated if respecting the rule leads to far monagiex
loop programming.

Justification

A large number of loop exits destructures the mogand adversely impacts comprehension.
The unconditional exit instruction in a loop destures the program and increases its complexity.

Example

InC
/I incorrect
Index = 0;
while (Index < MAX)

{
if (Letter[Index] == KEY)

break;
}
Index ++;
Processing;
}
I correct
Index = 0;
while (Index < MAX) && (Letter[index] != KEY))
{
Index ++;
/I processing
} / end of loop for variable

Tr.ModifCondSortie The loop exit condition must not be modified inpoarocessing.

M=3;R=3;P=8;V=1

Any

Description

The loop exit test must compare the loop paranwvetiele with a value known at loop entry and
independent of loop body processing.

Justification
Enhances readability.
Example

InC
/I incorrect
for (I = 0; | == Max ; I++)

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes _ Page 43
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
{
Max = Func_1();
}
Tr.ModifCompteur The loop counter must not be modified in loop psso@y.
M=3;R=3;P=7;V=2
Any
Description

The loop parameter value must not be modified by lbody processing, unless to provide iterative

instructions that do not implicitly modify the lo@ounter. In the latter case, the loop counter evily be
modified once, at the end of the loop body.

Justification
Enhances readability.
Example

InC
I/l Incorrect
for (1 = 0; | <= max; I++)

{

i"= Func_1();
}
/I Correct

while (I <= max)

[++;

}
Tr.RecursifSol Recursive operations must not be used unless tkegoaceptually simpler than
M=0:R=2:P=64:V=1 an equivalent iterative operation.
Ground
Description

All recursive problems have iterative solutionswéwer, certain types of data are particularly vseited
to recursive algorithms. In this case, this typeadution should be preferred. However, beforelyapg

a recursive solution, the mechanisms for exitirqyrgivity should be defined from the design ph&se.
example, the maximum call depth attained duringetien can be assessed to determine whether it is
permissible. If this is the case, this maximum eatan be used as a type limit for a depth control
parameter in order to correctly process the exopptiised by a test in the event this value is eted.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 44

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Justification

The use of recursivity is more difficult to testdaio understand: its use must be limited for theson.
Example

Not Applicable

Tr.RecursifBord Recursivity is prohibited.

M=0;R=3;P=64;V=2

On-board

Description
This rule concerns direct recursivity, as wellradiriect or cross recursivity.
Justification

Recursivity may cause non-deterministic behavibat iay be dangerous when the depth (i.e. the
number of successive calls) is not known from thiset. It is therefore difficult to assess the sikthe
execution stack required to execute a recursiverighgn.

Example
Not Applicable

Tr.FonctionSortie A function must only contain one exit instruction.

M=3;R=2;P=15;V=2

Any

Description

Functions are exited using a return instruction thast be accompanied by a significant nominal ealu
Multiple exit points are tolerated for error prosieg (return instruction associated with the retfran
error code value).

Justification

This rule improves the maintainability of the sulegram in the event that processing must be added
before the exit instruction.

One single nominal exit and one error exit redbeedomplexity of the sub-program and the associated
test effort required.

Example

InC:
I function returning an integer
int Function_1 (void)

{
int Res ;
if feof (F_Desc)
{
Res = 0;
}
else
{

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501

Cnes - Page 45

COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009
Res =1;
return (Res);
}

Tr.ProgDefensive Defensive programming, which involves the use efqonditions and post-

M=1:R=3:P=20:V=1 conditions, should be preferred.

Any

Description

Defensive programming involves adding assertiorteéncode in order to verify invariants: as inputs,
these are pre-conditions; as outputs, these atecpnoditions. If an assertion is not verified, aroeis
reported or an exception is flagged.

To avoid adversely impacting performance, assestinay be made "optional" using conditional
compilation techniques.

Justification

Function use constraints are formally specifie@{gondition). Post-conditions provide the user with
guarantees regarding processing performed.
Application fine tuning is facilitated.

Example

In SHELL
Programs must verify the validity of all of thengaments before beginning processing and check all
user entries (with the keyboard)
In C++
class TableUnsigned{
/I Table of positive integers.
public: // Constructor
Table(unsigned min, unsigned max);
/I Creation of a table of min and max. limits
public: // Access
int& operator [](int index)
/I Read-write access
{

precondition(index > min() && index < max());
/I Pre-condition
int& return = accessReadWrite(index);
/I Call from delegation function.
post-condition(return >=0);
/I Post-condition
return return;
}
private: // operator delegation function [].
int& accessReadWrite(int index);
}

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 46
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Tr.Residus

M=2;R=0;P=71;V=2

Any

No programming residue must exist as commentsarcdiale: an instruction that
is no longer used must be deleted.

Description

Residues are often portions of dead code that apftea the code has been modified. However,
unattainable code may exist due to robustnessssthie code must be commented.

Justification

Dead code weighs down code and negatively impaetsability.
Dead code may cause useless test efforts to bermexd.

Example
In FORTRAN

All labels must be used. Labels that are no lomged must be deleted.

Tr.Parenthéses

M=1;R=2;P=42;V=2

Any

Expressions must be systematically enclosed imgaeses.

Description

Syntactically redundant parentheses are addechzner readability.

Justification

Enhances code readability and facilitates portabili

Example
InC
Replace:
totalPressure = forceA / SurfaceA + forceB / Surfac eB;
With:
totalPressure = (forceA / SurfaceA) + (forceB / Sur faceB) ;

Tr.CalculStatique

In compiled languages, it is better to perform gkitons on static expressions

M=0;R=1;P=100;V=1

compilation, with maximum accuracy, rather thanaipically calculated

Any

expressions.

Description

This point is even more important when the targatimme is less efficient than the machine used for

development.
Justification

Portability, performance

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 47

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Example

In ADA:

In this first case, all data are constants: theesmay therefore be calculated once and fortall, a
compilation, and with the level of accuracy offetsdthe development machine.

Pl : constant := 3.1415926536;

Pl_OVER_2: constant := P1/2.0;

OF _DEGREE_TO_RADIAN: constant := PI_OVER_2/90.0 ;

OF_RADIAN_TO_DEGREE: constant := 1.0/ OF_DEGREE_TO _RADIAN;
In the second case, all data are variable: consélguthe compiler generates an initialisation gode
which will be executed on the machine with the aacy of the latter.

Pl : real := 3.1415926536;

PlI_OVER_2 :real :=P1/2.0;

OF_DEGREE_TO_RADIAN: real := PI_OVER_2/90.0;

OF_RADIAN_TO_DEGREE: real := 1.0/ OF_DEGREE_TO_RAD IAN;

Tr.Booleen A complex conditional expression must be replaged bnique Boolean that
M=2:R=0:P=72:V=1 expresses a state.

Any

Description

Not applicable.
Justification

Enhances code comprehension and readability.
Example

InC
Replace:
if (forceA >= Limitl && abs(forceB) < Limit2) ...
With:
bool constraintA = forceA >= Limitl ;
bool constraintB = abs(forceB) < Limit2 ;
bool conditionAB = constraintA && constraintB ;
if (conditionAB) ...

Tr.DoubleNeg Double negatives must be avoided in Boolean exjpmess

M=2;R=1;P=47;V=2

Any

Description

Not applicable.
Justification

Double negatives make code difficult to understand.
Example

In ADA

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 48

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Prefer:
if EXISTS then -- COMPREHENSIBLE
over:
if not DOES_NOT_EXIST then -- HEAVY
Tr.MelangeType Different types of data should not be mixed inshene expression.
M=3;R=3;P=9;V=2
Any
Description

The type of an arithmetic expression is generathgdnined by the compiler according to the type of
operands and rules, which may sometimes eludeaelaper.

The following are exceptions to this rule:

* exponentiation by an integer (which is not an ekioep strictly speaking, because coercion rules do
not require conversion in this case),

* multiplication by a literal scalar integer of smedllue.

Justification

Enhances readability.
Allows expression assessment to be managed

Example

In FORTRAN

This example shows how mixing different types afdzan produce assessment that is less accurate
than initially desired

REAL OPER1,0PER2

DOUBLE ACCURACY RESUL,OPERS3

RESUL = OPER1 + OPER2 + OPERS3
In FORTRAN 77, the previous instruction is equivilto the following sequence:
REAL TIME
TIME = OPER1 + OPER2
RESUL = DBLE(TIME) + OPERS3

For maximum accuracy, the following should havenbaged:
RESUL = DBLE(OPER1) + DBLE(OPER?2) + OPER3

Tr.ComparConst In a comparison with a constant, the variable ralygays be to the left of the

M=1:R=1:P=59:V=1 comparison operator.

Any

Description

The expression comparing a variable to a constagtbre written in two different ways, depending on
whether the variable is compared to the constantice versa. The code should always be writtet suc
as to compare the variable to the constant.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 49

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Justification
This type of comparison improves program readagbilit
Example

In C or C++
/I incorrect
#define MAX_PARAM
if (MAX_PARAM >= Nb_Param)

{

/I nominal processing
}
/Il correct

#define MAX_PARAM
if (Nb_Param <= MAX_PARAM)

/I nominal processing

Tr.OrdreParFormel The declaration order for formal parameters mustthedardised.

M=1;R=0;P=116;V=1

Any

Description

The order will be defined for the project. Passimgdes will not be used by default (for example’ fin
ADA).

Justification
Readability is improved by clarifying semantics.
Example

In ADA

Parameters are cited according to the orihethenin out, followed byout).
In FORTRAN

The parameter list must use the following order:

- hame of sub-program,

- input,

- input/output,

- outputs,

- return code

Tr.ParamOptionnel Optional parameters must not be used when defamngperation.

M=1;R=0;P=115;V=2

Any

Description

Optional parameters will not be used when theypassible; some evolved languages, such as JAVA,
have already abandoned the use of this mechanisith s considered to be too risky.

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 50

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Justification

The use of optional parameters masks real intesfaoreoperations and may cause them to exhibit
surprising behaviour.

Example
In C++
Replace:
void Calculation (double x, double epsilon=0.00001) {...
With:
void Calculation (double x) { Calcul (x, 0.00001) ; }

void Calculation (double x, double epsilon) { ...

Tr.ModifParSortie An operation must not modify input parameters.

M=2;R=1;P=48;V=2

Any

Description

This is particularly true for non-scalar input ekamts (such as tables, structures and instancasjrtha
passed by address or reference.

Justification

Declaring an input parameter as constant contrsiat@pplication reliability because this consiant
verified by the compiler. This also serves as endrcomment for function clients, who are ensuled t
objects passed to parameters will not be modified.

Example

In C or C++

An input argument passed by address will be oldigsitprotected by the qualifiezonst
int Seek_Ind (const int * Tab, int Dim, int Val)

{
}
Tr.ModifVarGlobal A function must not modify the value of a globatiable or involve output
M=2:R=3:P=12:V=2 parameters.
Any
Description

A sub-program with only one output parameter mesa lfunction unless this parameter is simply a
processing sub-product (in which case, a procedilrée used).

Justification

Enhances readability by better highlighting theeobpf the triggered action.
Eliminates side effects.
Improves reliability and portability.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 51
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Example
In ADA
Replace:
EXTRAPOLATE (THE_ORBIT => THE_CURRENT_ORBIT,
ON_THE_DATE => THE_CURRENT_DATE) ;
With:
THE_CURRENT_ORBIT := EXTRAPOLATION (OF => THE_CUR RENT_ORSBIT,
ON_THE_DATE => THE_CURRENT_DATE);
Tr.ParSortie All output parameters for a procedure must haveived a value before the firs

processing condition, by initialisation by defaifitpecessary. The same is true

M=R=P=25v=1 for variables used to return the value of a functio

Any

Description

However, it is more important for the sub-progranatcomplish what it must accomplish (or raise an
exception) than to give values.

This rule does not apply if one of the parametemsieturn code; certain othert parameters may not be
initialised if they are not significant (this stydé programming must generally be avoided, butithisot
always possible, especially when interfacing witteo languages).

Justification
Avoids random results.
Example

InC:
Correct example:
void setAlpha (int * alpha) {
*alpha=0 ; // value by default
if (...) M
}
Incorrect example:
void setAlpha (int * alpha) {
if (...) M
}

7.6. ERROR MANAGEMENT

Err.Mecanisme Error management must be performed using resourg#smented in the

M=3:R=3:P=10:V=0 language (exceptions or other). If the languagersféeveral possible

mechanisms, the mechanism that best respectshtbeartor management rules
Any should be selected. If the language does not sffecific error-management
mechanisms, a dedicated error management modulebegseated.

Description

This mechanism will be used for languages that stgpe exception mechanism. For the others, the
return code for functions or services will be usatj rules concerning this return value will beirksd
and the use of these return values will be reqUisedallers.

Justification

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 52
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

When the exception mechanism is available, it tfesnd effectively processes errors that occurrdyri
execution. Caller and callee roles will be wellided.

Example

In ADA
The failure management policy uses the ADA langlsagpeception mechanism. The return code
technique associated with sub-programs, that wésslociates a validity marker to variables, and
that which centralises errors are all prohibited.
In IDL
The CATCH mechanism should be used rather tha@MERROR mechanism
In Java and C++
Functional return must not be used for error manant. The exception mechanism should be used.
In SHELL
A program that ends correctly must always expligidturn the value 0. A program must always
explicitly return an error code in the event ofiacident. The project may define error families and
associated termination codes because the shellggnogay fail for various different reasons

Err. TraitementDiff Error processing must be differentiated accordinfatilt.

M=0;R=2;P=65:;V=0

Any

Description

Failure processing is differentiated accordinghm tiype of failure. This corresponds to the prégect
application logic and meets robustness targetsstindtion will be made between planned and
unplanned failures and cases in which a solutiomefsolving the failure is known and those in whiicis
not. Failures are distinguished either by creatfagilies" of exceptions, or by coding error nurrder

Justification
Enhances reliability
Example

In C++ and JAVA
Exception levels will be defined using the heritagechanism and by filtering errors using well-
organised catch blocks.
InC
An integer should be used to code errors with dlewing rules:
errno < 1024 => system error
1024 <= errno < 2048 => input output error applicat ion level
Etc.

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 53
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Err.Impression

M=0;R=1;P=99;V=1

Any

The possibility of reporting an error message rbasstudied.

Description

An error message may be reported using a trag#, preation of an error file, use of an error vandor
console, or the use of a dedicated error peripheral

Justification

Facilitates fine tuning.

Example
In SHELL and PERL

Errors are recorded in a log file.

Err.Nom

M=0;R=1,P=95;V=0

Any

An error process or an exception must have a nhateekpresses the reason fg
which the service requested may not be provided.

Description

This rule mainly concerns exception languages oftwer languages, meaningful symbols may be
defined for each "error code".

Justification

Enhances readability.

Example
In ADA:

package THE_LISTS is
type A_LIST is limited private ;

LIST_SATUR
-- Lifted when

ATED: exception;
the list is saturated at creatio n or insertion.

end THE_LISTS;

In SHELL

Scripts will use the following abnormal end codiae (humerical value is indicated between

parentheses):
BAD_ARGS (1)
NO_FILE (2)
UNKNOWN (3)

Error in the number of arguments for a function
File access error
All other errors.

Check the RNC site before using to ensure that the version used is the applicable version.

=

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 54

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Err.FinOperation Error processing must be localised at the endeobtheration.

M=1;R=1;P=60;V=1

Any

Description

In most cases, when an exception is flagged, tkeeatipn is stopped. Processing of all exceptioas th
may be flagged must be performed at the end ofpleeation, rather than by nested blocks, each affwh
manages its own exceptions.

Justification

This rule enhances code readability. The nomirgdréghm is not polluted by error processing, and
processing that is common to several exceptionshadgctorised at the end of the operation.

Example
Not Applicable

Err.Operation Error processing must be performed at the levéh@bperation that may proce
M=1:R=3:P=21:V=0 this error.

Any

Description

In exception languages, an exception must not émvezed by a function that does not have the ressur
to process it.

Justification

Processing an error too early weighs down the codecessarily.
If processed too early, the programmer risks faiggto propagate the error one level up, wheneay
be processed.

Example

In C++ or JAVA
Incorrect example:
/ method1 can send the exception MyException.
void method1() throws MyException {
if (...) {

throw new MyException();
}

/l method2 calls method1 but does not know how to p rocess
/I MyException.
void method2() {
try {
method1();
} catch (MyException e) {
I/l Simple trace, no processing of the error
}

}
Correct example:
void method1() throws MyException {

if () {

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes I Page 55
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

throw new MyException();

}
}

I/l Declare that method2 can return the exception.
void method?2() throws MyException {
/I If method1 tags the exception MyException
/l it is propagated to caller of method2.
method1();

}

Err.IntegriteDonnee | Error triggering must not modify data integrity.

M=1;R=3;P=22;V=0

Any

Description

With OO languages, for objects with non-trivial stmction, an exception thrown during modificatimfn
an object can lead to non-integrity.

Justification
Lack of data integrity causes serious problemspredictable operation.
Example

In C++:
An example in which a failed allocation during asignment operation destroys data integrity
class String {
private:
char * string ;
public:

String (const char *s) ;
String (String & s) ;
~String () ;

/I Assignment operator
String & operator= (const String & s) ;

3

String::String (const char * s) {
int size =strlen (s) + 1 ;
string = new char [size] ;
strcpy (string,s);

String & String::operator= (const String & s) {
if (this!=&s) {
delete [] string ;
int size = strlen (s.string) + 1 ;
string = new char [size] ;
/I if the allocation fails,
/I string points to an area that has just been
/I freed (and may therefore be reused later)
strcpy (string,s.string);

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 56

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

}

return *this ;
}
To avoid this problem, each call to new must begadain a try catch block; in the event of an error,
string must be assigned 0; the string will thervéefied to be different from 0 before each
legitimate operation, including destruction.

Err.ToutesTraitées All errors must be processed. No errors must beðsr ignored: error

M=0:R=3:P=42:V=0 triggering must never abruptly interrupt the pragra

Any

Description

To enhance application robustness, the applicatiost receive all signals (or interruptions) androef
case-by-case processing strategy according toethe and nature of the signal.

Justification

An unprocessed exception leads to the program laingptly stopped, which is never desirable.
Example

In general: the case of numeric exceptions
In the specific case of the arithmetic procesdbnumeric exceptions must be examined. Certain
exceptions may be masked (generally rounding adénfiow exceptions) with a justification.
Unmasked exceptions must be associated with dedisaiftware processing.

In C++
A non-processed exception is returned to the higbesl, and causes untreated exception handlers
to be triggered. Two handlers exist: "terminataijch mandatorily terminates the ongoing
execution, and "unexpected" which may allow theenirexception (not processed) to be rerouted
to a processed exception. These handlers may béned using customised functions: this may be
useful in attaining ultimate robustness or to pssoeery general exceptions at a high level. It must
not replace local processing of exceptions. Theipefunctioning and the connections between the
two handlers "terminate" and "unexpected" genedgiyend on the application context: their

respective behaviour should therefore be carefuiblysed when being used.
Example of redefining "terminate"
void MyEnd () {
cerr << "No processed exception\n" ;
exit (-1) ;

}

void End () throw (char *) {
/I Modification of termination handler
terminate_handler previousTerminate = set_terminat e (MyEnd) ;

/I Code
if (...) throw "Exception” ;

/I Recovering standard handler
set_terminate (previousTerminate);

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes I Page 57
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Example of redefining "unexpected"”
void MyEnd2 () throw (int) {
cerr << "Unexpected exception\n" ;
throw (1);

}

void End2C () throw (char *) {
/I Modification of termination handler
unexpected_handler previousUnexpected = set_unexpe cted (MyEnd2) ;

/I Code
if (...) throw "Exception” ;

/I Recovering standard handler
set_unexpected (previousUnexpected);

}
void End2 () {
try {
End2C ();
}
catch (int e) {
cerr << "Interception " << e << endl ;
}
}
Err.Canal Error messages must be sent to the user via aadedimput output channel,

when this exists in the language. If it does nastea dedicated channel must b

M=1R=0 ;P=114V=1| reated for this purpose.

Any

Description
The channel may be any type of communication resowr logic channel, file, console, etc.
Justification

Improves consistency in error reporting
Enhances reliability

Example

In SHELL
The error descriptor 2 is used, which correspoadsdtandard error file. The user can ask that
normal display be redirected in the file, while ntaining error display on-screen.
if a_test that must_succeed
then
Any operations
else
print 'The test_that must_succeed has failed!" > &2
fi

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 58

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7.7. DYNAMIC

Dyn.OS Task and thread management mechanisms offerecelypérating system and/or

M=1:R=1:P=54:v=0 the real-time kernel must be carefully analysectifens regarding the use or

non-use of each mechanism must be carefully dieduss
Any

Description

The programming environment generally offers spised classes and services to allow multi-tasking
and multi-threading to be managed. In particul@asses for managing mutual exclusion and servimes f
inhibiting preemption, etc. are offered.

Compilation options also allow the generated codect customised: for example, to verify or enshes t
one variable will not be shared by various threads.

Justification
Multi-thread programming is highly context-specific
Example

In IDL

On multi-processor machines, IDL authorises milteading, which increases calculation speed by
simultaneously using the available processors.dDiomatically assesses the calculations performed
by the various routines and decides which will Bg¢fi®m multi-threading, according to the
following parameters:

Number of elements concerned,

Processor availability,

Availability of a multi-threaded version of the tme used.
Only a certain number of IDL instructions have dtirtireaded version, and may as a result benefit
from multi-threading. To obtain this list, referOL online help under the heading "Services that
use the thread pool".

Dyn.AttenteActive No tasks or threads should have active waiting.

M=0;R=1,P=96;V=0

Any

Description

An active loop is defined here as a permanent &mopnd a scanning or processing activity that iene
suspended by standby or waiting.
Tasks with active loops are prohibited.

Justification

Tasks with active loops are permanently activeraidmonopolising the CPU at the expense of other
tasks, and possibly freezing the application.

The correct operation of a program that does regieet this rule depends on the behaviour of its
computer and its operating system when managikg.t#tss conditioned by the number of processors,
priority management and the time share used.

The reliability of this type of program is uncertaand relies on the machine that executes it.

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes N Page 59
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009
Example
Not Applicable
Dyn.Abort A program must never be abruptly ended by a taskread termination

M=0:R=1:P=91:V=1 instruction (such as exit or abort).

Any

Description

When a termination instruction is executed, thisses the task to be abruptly stopped. The resources
used by the task may be in an incoherent states that depend on these resources may be abruptly
aborted as a result.

Justification
Enhances program reliability, especially as regdeda and processing consistency

Example
In ADA
Theabort instruction is not effectively executed when thstiuction is read, but rather is delayed
until a "check-point", such as the beginning or ehd process, select instructiaelay, This

delay cannot be controlled and may lead to unerpdathaviour.

Dyn.PrioRelatives Absolute priorities must not be used for tasks thineads, but rather relative
M=1R=1-pP=55\=1 | Priorities.

Any

Description

Real-time architecture must be designed withoutietipg the task sequencing algorithm. Respectiisg th
rule guarantees application portability.

Justification

Enhances the efficiency of multi-task programs
Enhances the portability of multi-task programs

Example

In ADA
No Priority pragma is used to manage task synchronisation.
In certain real-time applications, theority pragma may be authorised in order to optimise
computer resources.

Dyn.Ressources The resources allocated in a thread must be frethdd same thread.

M=0;R=3;P=38;V=0

Any

Description

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 60

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

For a multi-threading support, many compilers wyetfifis point.
Exception: if a thread is written to implementiastance factory: this thread will be solely in agof
building instances, which are destroyed by otheratis.

Justification

Enhances the reliability of multi-task applications
Example

In C++

When programming ilVindows, the allocation of a COM/OLE object by a threadstree freed by

the thread.

Dyn.SectionCritique | The creation and initialisation of tasks or threadsst be encapsulated; they m

M=0:R=3:P=37-V=0 be performed in a critical section, without any $bgity of being interrupted.

Any

st

Description

Not applicable
Justification

No events must disturb task creation and inititibsa
Example

In JAVA
The start() method should be called inside thesclas
Incorrect example:
/l Implementation of the Runnable interface.
class Display implements Runnable {

public void run() {
while (true) {
/l Draw.

.r.épaint();

}
}

/I In another class, creation of the interface.
Drawing displayed = new Display("Christmas Tree");

Il Creation of the object Thread.
Thread myThread = new Thread(drawing); // no enca psulation

I Activation of thread.
myThread.start(); /l no encaps ulation

Correct example:
/l Implementation of the Runnable interface.
class Animation implements Runnable {

/I Private attribute used to store a thread

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 61

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

/I identifier.
private Thread myThread,;
/I Creation of a Thread object and activation o f the thread.
/I Initialisations in the constructor.
Animation(String name) { /I Scope of the constructor is
Il not speci fied.
myThread = new Thread(this); // Creation of a Thread object
myThread.start(); I activatio n of thread.
}
}
// Creation of an animation.
/l The way in which the animation object is impleme nted does not appear

I/ from the outside.
Animation Hello = new Animation("Hello");

Dyn.Partage Variable shared between threads should be carefnfjysed.

M=1;R=3;P=23;V=0

Any

Description

Specifically, the resources (essentially variab#s)red between the main thread and secondarythrea
should be analysed, as well as resources shareddresecondary threads.

A thread is generally implemented by a function sghtaunch mode is asynchronous: this rule means
that data that is local to this function or to ftios called by this function may be handled ihr@ad.

In handling of variables shared between threadskélyword volatile should be used to inhibit corapil
optimisation relating to the recognition of sub-ggsions: note, however, that this attribute dags n
guarantee data integrity. This declaration mustdsepleted by using semaphoresrrtex.

Justification

Non-synchronisation between threads may lead whigient results or unexpected behaviour concerning
the shared resources. This non-synchronisationtmasery critical during the allocation or dealldoat
of these resources.

Example
Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 62
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7.8 INTERFACES

Int.ExistenceFichier | The existence or non-existence of a file must asnzgy verified before the file ig

M=0:R=2:P=66:V=1 opened or created; actions to be performed intbatef failure must be

provided for.
Any

Description

Read- or write-access to a file may be preventeddweral reasons.
Justification

Enhances reliability
Example

Not Applicable

Int.CheminFichier The access path to any file must be parameterised.

M=2:R=0 :P=113;V=1

Any

Description

The file access path may be placed in an envirohraiable, but other parameterisation resources ma
also be used (parameter files, etc.).

Justification
Facilitates upgrading.
Example

InC
#include <stdlib.h>
char *Name_Directory;
Name_Directory = getenv ("REP_FILE_CONF"); // recov ery of full
// path to directory containing
Il configuration files

Int.CheminAbsolu Access paths must not make any hypotheses ondleitrent directory.

M=2:R=1;P=56;V=0

Any

Description

The current directory is volatile information.
Justification

Improves reliability and portability.

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 63
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Example
InC

Paths to includes are independent of the file lonatr compilation directory

In SHELL

The current directory (*.") must never be in tharcle path used by a SHELL program

Int.Environement

M=2:R=0;P=83;V=0

Any

Elements relating to program installation must bsighated using specific
environment variables

Description

Not applicable
Justification

Enhances portability.
Example

In WAWE

The environment variable "WAVE_PATH" must be pasitd outside of the application and must
not be modified in services. This environment valgandicates the directory(ies) in which the
modules and services that may be used by WAVEcaiaed. These directories are scanned in the
order of their appearance in "WAVE_PATH". This \adulie is comparable to the "PATH"

environment var

iable used in UNIX.

Int. Temporaire

All temporary files created by the application mbstiocated in dedicated area

M=0;R=1,;P=92;V=0

and destroyed at the end of execution, at thetlates

Any

|72}

Description

Program execution must not pollute disk space.
Temporary files should be destroyed as soon ashp@ssspecially if they are large.

Justification

Disk space is finite; it is essential that thiscgphe conserved.

Example
Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 64

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Int.FichierFermeture All open files must be closed at the same algoriithievel: module, class,

M=0:R=1:P=93:v=0 operation.

Any

Description

Not Applicable
Justification

This rule allows file opening and closing operasioa be grouped together in the same service wwrens
that the file has effectively been closed.

File closing is important, as it frees logic uratsd allows other files to be opened (the number of
available logic units is limited).

Example

In PVWAWE
Files can be closed using either the "CLOSE" fumctr the "FREE_LUN" function, depending on
the opening mode.
Processing associated with files (reading, writimgly be performed in other called services. Only
OPEN and CLOSE operations must be performed isdhee service.

Int.GrouperES Input/output instructions of the same type musgtmeiped together.

M=1;R=0;P=112;V=0

Any

Description

It is better to have fewer long I/O instructiorstheer than numerous short I/O instructions.
Justification

The surplus regarding the operating system ketmgdtion calls penalises the system.
Example

InC
Il incorrect
printf(" x = %f", Var_X);
printf(" y = %f", Var_Y);

Il correct
printf("x = %f y = %f", Var_X, Var_Y);

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 65

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

7.9. QUALITY

Qa.Ressources The software must be free of user interface detgilssing separate graphical
M=1;R=0;P=111;v=0 | '°>OUrces

Any

Description

The graphical capacities of the target machinesldhwt be assumed. When building a GUI, the
graphical attribute values for the hardware platfshould never be set.

Justification
Enhances portability.
Example

In general:
When building an GUI, the character font or foesshould never be set.
In JAVA:
To determine the list of fonts available, use:
java.awt.Toolkit.getFontList()
To determine character font size, use:
Font.getFontMetrics()
Graphics.getFontMetrics()
For example:
String fontCourier = ... // Not set.
titteFont = new java.awt.Font(fontCourier, Font.BOL D, 12);
titteFontMetrics = getFontMetrics(titleFont);
In PVWAWE:
Assign font sizes and colours in a resource file.
Use constants to define widget size in pixels (gpsition etc.).
Use constants to allocate resources.
Use constants to locate the position of menu items.

Qa.PortType The portability of base types should always beracem.

M=1;R=0;P=110;V=1

Any

Description

Base types (numeric, characters) generally deperideomachine or environment in which they are
executed.

Justification
Enhances portability.
Example

In C:

Base typesift, float) should not be used as is. The physical sizeeninth type integer depends on
the target machine. In general, it correspondbléantost natural size on the target machine.

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
Page 66
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

In ADA:

INTEGER sub-types will be defined.

In addition, a distinct type will be defined foralagroup of quantifiable entity, with the appropeia
application constraints. As a result, the typeriplemented correctly regardless of the machine. If
we want the type to be represented identically 82664, ... bits) on all machines, a represemiatio
clause must be added.

-- First unauthorised example
procedure COUNT_AIRCRAFT is
NO_OF_AIRCRAFT: INTEGER :=10;

begin

end COUNT_AIRCRAFT:

-- Second authorised example: be certain to define

-- application type only for counting aircraft

procedure COUNT_AIRCRAFT is

MAX_NO_OF_OBJECTS: constant := 100;

type AN_AIRCRAFT_COUNTER is range 0.. MAX_NO_OF_OBJ ECTS;
NO_OF_AIRCRAFT: AN_AIRCRAFT_COUNTER :=10;

begin

end COUNT_AIRCRAFT:

Qa.RepérerPort

M=1;R=0;P=108;V=0

Any

The non-standard or non-portable elements usedmeusentified and program
functioning must be adapted if need be.

Description

Programs that must be executed on more than aget taust detect and adapt themselves to targets.

Justification

Enhances portability.

Example
In SHELL

Many aspects of script functioning may be altedsghending on the operating system executing the
program. For a script to be portable, these depenele must be factorised as much as possible and
isolated in a specific initialisation block. It mhg wise to create a special initialisation/confégion
file containing these dependencies. This file wahcerns the entire project and will be read byheac
script.
Here is how a script might begin:

version="uname -r | cut -d. -f1°

case $version in

5) # Initialisations Solaris 2.x

4) # Initialisations SunOS

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 67

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

*) echo Type of system "uname -a” unknown
exit 1

esac

Qa.TestRetour Function return must be systematically tested,iipalty system function return

M=0;R=2;P=67;V=0

Any

Description

A function call must never appear as an indepenidstruction. A function must never be used only fo
its side effects.

Justification

The role of a function is to provide a value in #ssessment of an expression. The programmer seist u
this function return value: if this is not the cage programmer must use a procedure and notcidan

Example

InC:
Il correct
State = Control_State (Var_X, Var_Y, Var_2Z);
(void) printf ("State =%d", State); // Tolerated fo r this type of
function

Il incorrect

(void) Control_State (Var_X, Var_Y, Var_2);
Il or

Control_State (Var_X, Var_Y, Var_2Z);

Qa.Branches In conditional instructions, the most frequent amakt simple branches must be

M=1:R=0:P=107:V=0 processed before the others, in order to enhaméerpance.

On-board

Description

Multiple choice type instructions verify the cagearding to its order of appearance in the block.
Frequent and simple cases should therefore bedolsfere rare and complex cases.

If the portion of code concerned is not criticar@gard to execution time, logical case order ghbel
used (see Tr.Choix)

Justification

Improves execution time
Example

Not Applicable

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 68

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Qa.Performances Effectiveness can be enhanced by studying thelpltisss made available by th

1)

M=1:R=0:P=106:V=0 development environment (compiler, performanceyamalools, etc.)

Any

Description

"Profilers" allow application execution to be traced. Anadyiols may then be used to examine the parts
of the application that use the most resources @ngr execution time). Some software allow these
analyses to be performed automatically by ensudisigibuted process monitoring.

In most cases, 90% of execution time is consumeahby10% of a program, and this, most often in
areas in which we might least expect. Optimisaéiffarts must thus be concentrated here.

Justification
Improves effectiveness
Example

In C++:
Compilers generally propose specific options farction management. In particular:
call managementdst call, use of directories rather than the stack for remursive functions, short
calls, etc.),
inline management: inhibition of expansions onamtion condition; seeking functions to be
automatically put inline, etc.,
pointer representation mode to virtual member fionst previous definition of pointers,
acknowledgement of multiple heritage, etc.

In JAVA:
The interpreter prof option creates a profile iiléhe current directory, which can subsequently be
used.
Qa.Pile Stack consumption as compared to available quesititiust be carefully studied.

M=0:R=3:P=42:v=1 In particular: local data, parameters and call thejgth.

On-board

Description

When the size allocated to the stack is criticahay be preferable to work by side effect on globa
variables rather than using local data or paranpetssing, which will create stack consumption. This
choice must be guided by careful analysis of thietrege depth, in "worst case" type scenarios.

In C, C++ and ADA, an address or reference passimge may also be used for data that occupies
significant memory space. This would allow spacbdaved in the stack (the size of the data aslifes
smaller than the data itself).

Justification

Improves effectiveness: correct stack sizing all®&#®d resources to be optimised
Enhances reliability by avoiding stack overflow

Check the RNC site before using to ensure that the version used is the applicable version.

MANUAL RNC-CNES-Q-HB-80-501

é cnes . page 69

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Example
Not Applicable

Qa.Interruptions Software processing dedicated to accounting faivaare interruptions must be
M=0'R=1-P=93'v=0 | &S brief as possible.

Any

Description

This software process is callediaterruption handler. Each interruption is associated withamdler or
IT processing. Interruption acknowledgement blocks the acknogggdent of other interruptions (not
considering re-entry), which may be events thairaportant and which must be handled in a timely
fashion. Therefore, in order to avoid monopoliding processor, processing times for interruptionstm
be kept to a minimum, and important tasks must beeah to the application excluding interruptions.

Justification

Improves response time for real-time applications.
Example

Not Applicable

Qa.Factorisation Execution time-consuming sub-expressions must balgssessed once.

M=0;R=1;P=97:V=0

Any

Description

Arithmetic expressions must be factorised to tleatgst extent possible; invariants must also beveth
from loops.

Justification

Improves effectiveness

Example
In ADA
Y =3*X*X +2*X => 5 operations
Y = X*(3*X + 2) => 4 operations

Check the RNC site before using to ensure that the version used is the applicable version.

5 MANUAL RNC-CNES-Q-HB-80-501
cnes _ Page 70

COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Qa.Algébre Algebraic identities which can accelerate calcatatnust be used.

M=0;R=1;P=98;V=0

Any

Description

Algebraic identities may be used judiciously tailitate certain calculations.
Justification

Improves effectiveness
Example

In general:
In searching for the point closest to point (X0,),Y&earching for the point that minimises the
expression (X1-X0)*2 + (Y1-Y0)"2 is sufficient ;lcalating the square root is not necessary.

Qa.Correlation Correlated quantities must be calculated simultasko

M=1;R=1;P=57;V=0

Any

Description

Group together all calculations relating to the sgroblem.
Justification

Improves effectiveness
Example

In IDL:
IDL includes routines to simultaneously calculaberelated quantities.
The maximum value of the array table is calculased, the minimum value is simultaneously

calculated as well.
MaxValue = MAX(array, MIN = minValue)

Qa.ReutValide Only validated services may be reused.

M=3;R=2;P=14:V=0

Any

Description

Only standard, validated and up-to-date comporents be reused.
Justification

Enhances portability.
Example

In JAVA:

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 71
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Use JFC Java Foundation Class - packages from Sun, which contains among othegshthe
Swing graphical interface classes as well as anJaRa 2D implementation.
Libraries may be re-written for very specific prjeonstraints.
Example: This may be the case for the library cgikenathematical functions other than those
provided with the target arithmetic processor. Biisws the application to effectively manage:
numeric behaviour (which is independent of the riregost or target)
the number of nesting levels in the call tree @bgrminimising the size of the execution stack)
performance in terms of calculation time.
In PERL:

For developments that require the current or fupassibility of being executed on various OS,
direct system calls should not be performed, biliera Perl primitives should be used as much as
possible, as they are generally more portable.

Do not write:

print “‘whoami’;

but:

print getlogin;

Qa.OptionsCompil With a compiled language, the compilation optidret will highlight a

M=1:R=2:P=43:v=1 maximum number of compilation warnings should bedug&ach unresolved

warning must be justified.
Any

Description

By default, compilers do not provide the maximunmiwer of compilation warnings.
Justification

Enhances robustness.
Example

InC

Example: Using the option —Wall in tigec compiler specifically locates problems that aféaililt
to debug: implicit conversion between signed arglgmed values or the illicit use of an allocation i
a test.

In PERL:
PERL provides the programmer with a way of beingned when he performs coding operations
that are not recommended (or prohibited). Theravanewvays to activate this check: the first is by

using the “w" option passed to the Perl interpreter, and teerss solution involves the use aisé
warnings "

Qa.Instrumentation Code instrumentation (code, assertions) must enteising dedicated

M=2:R=1:P=49:v=1 operations. If the language does not offer thesgatipns, a specific module

concerning them must be created.
Any

Description

Code instrumentation allows the rule Tr.ProgDefesso be applied.
In the specific case of on-board software, spexiet will be taken when creating instrumentation.

Justification

Check the RNC site before using to ensure that the version used is the applicable version.

S MANUAL RNC-CNES-Q-HB-80-501
Cnes - Page 72
COMMON CODING RULES FOR Version 3
PROGRAMMING LANGUAGES 17 September 2009

Enhances robustness.
Example

In on-board C
Macros defined in the file "lice.h" are used foe Myriade line.

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-
Page 73
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

501

8. SUMMARY

8.1. RULE SUMMARY TABLE

The rules are summarised below, in alphabeticadrord

Id. Rule Title Page
Don.AllocDynbord Dynamic memory allocation is prbitéd. 35
Don.AllocDynSol If the language supports the comcdpnamic memory allocation must be 36
used sparingly, and with caution.
Don.AllocEchec If the language supports the conoépiynamic allocation, the potential | 36
failure of a memory allocation request must beesysitically provided
for.
Donc.AllocErreur An error that occurs during pragieg must not cause memory to not be 37
freed.
Don.AllocLiberation All allocated memory must bedd at the same conceptual level. 37
Don.ChaineOper Global operations for charactengsr{initialisation, copy, duplication, | 35
comparison, search, modification) must be perforogdg standard
primitives provided by the language, when theytexis
Don.Declaration All data used must be explicitlgldeed 27
Don.Enumeration The use of constants or symbolg baupreferred (enumerative, if the | 30
language allows) over the use of whole numerictd.dehe use of whole
numerical data must be essentially limited to sergalculation or
counting.
Don.Homonymie The use of homonyms must be avoidedm in cases of overload or 31
explicit redefinition.
Don.Initialisation Variables must be initialisedftie being used for the first time. 32
Don.Invariant Constants must be defined for ertitinose value is invariant. 30
Don.Localite Local data declarations are prefemeel more global declarations: data| 29
that is local to a module are preferable to glatzdh, formal parameters
are preferable to global data, local data for peration are preferred ovar
module-level data, and local data for an instruchbtock are preferable tg
local data for an operation.
Don.LocalUnique Each local datum must have a unigpee 33
Data.PointeurNonAff If the language supports thmfge concept, when a pointer is not 32
associated with a specific object at declaratiocprament must specify
the object that will be associated with it andh#é language allows,
initialise it to null.
Don.Separee Each piece of data must have a sepasation. 27
Don.Structure When a conceptual object must beemphted as several data, this data31
must be grouped in a structuring entity (classicstire, record, type)
according to the possibilities provided by the lasage.
Don.TableOper Global operations for tables (ingetion, copy, duplication, comparison)) 34
must be performed using standard primitives pravio the language,
when they exist.
Don.TablePrincipe The processing principal (lineoJumn or column x line) for double entry 33
tables must be defined.
Don.Typage Data must be systematically and explitiped. 28
Don.TypeAnonyme Anonymous types must not be used. 28
Don.Utilisee All data that is defined must be ussedatum that is no longer used must 33
be deleted.
Dyn.Abort A program must never be abruptly ended@bgsk or thread termination | 59

instruction (such as exit or abort).

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-
Page 74
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

501

Id. Rule Title Page
Dyn.AttenteActive No tasks or threads should hasteva waiting. 58
Dyn.OS Task and thread management mechanisms atigréhe operating system 58

and/or the real-time kernel must be carefully asedly Decisions regardin
the use or non-use of each mechanism must be bpmiicussed.

Dyn.Partage Variable shared between threads sheutdrefully analysed. 61

Dyn.PrioRelatives Absolute priorities must not Isedi for tasks and threads, but rather 59
relative priorities.

Dyn.Ressources The resources allocated in a thmeistibe freed in this same thread. 59

Dyn.SectionCritique The creation and initialisatmfrtasks or threads must be encapsulated] 60
they must be performed in a critical section, withany possibility of
being interrupted.

Err.Canal Error messages must be sent to the issardedicated input output 57
channel, when this exists in the language. If @éslnot exist, a dedicated
channel must be created for this purpose.

Err.FinOperation Error processing must be localeethe end of the operation. 54

Err.Impression The possibility of reporting an emeessage must be studied. 53

Err.IntegriteDonnee Error triggering must not mgdifta integrity. 55

Err.Mecanisme Error management must be performiedj ussources implemented in the51
language (exceptions or other). If the languagersféeveral possible
mechanisms, the mechanism that best respectshtbeartor management
rules should be selected. If the language doesffart specific error-
management mechanisms, a dedicated error managerodate must be
created.

Err.Nom An error process or an exception must lramame that expresses the | 53

reason for which the service requested may notrdéged.

Err.Operation

Error processing must be performetieatevel of the operation that may 54

process this error.

Err.ToutesTraitées

All errors must be processedeiars must be masked or ignored: errgr56

triggering must never abruptly interrupt the praogra

Err.TraitementDiff

Error processing must be diffeiated according to fault.

52

Id.ClasseType

Though not dictated by the langutiigename of a type or class must b¢ a4

general term that identifies a group or categorgaif.

Id.ConstSignif

The name of a constant must contgegneaning and not its value.

23

Id.Fonction Functions must be named using a noanrdpresents the value supplied 26
by this function. For a function that returns a Bam value, a verb phrase
should be used to express a true or false status.

Id.IdentRegle Identifiers must be simple or credigdoncatenating several terms; the 21
same concatenation, use of determinants and upgdoaercase letters
must be common to all identifiers used in the prbje

Id.IdentSignif Identifiers must be descriptive. 21

Id.NomDonnee The name of a datum must be a commom taken from everyday 22
language; the plural form must be used if the datimset or group.

Id.NomParFormel The name of a formal parameter mmstey the relationship between the26
parameter and the operation concerned.

Id.Pointeur If the language supports pointer oemefice concepts, the name of a 24
pointer or reference must convey the semantickebbject it identifies
(pointed or referenced object).

Id.Procedure Procedure names must be infinitivesser verb groups that indicate the 25
action to be completed.

Id.Tache Task names must be composed using prazdnd events associated | 25
with and used to trigger or sequence the task.

Id.VarSignif The name of a variable must conveynigsaning. 22

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-
Page 75
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

501

Id. Rule Title Page

Id.VarType The name of a variable may also cont&type, nature or scope. 23

Int.CheminAbsolu Access paths must not make angtigses on the the current directory 62

Int.CheminFichier The access path to any file nmesparameterised. 62

Int.Environement Elements relating to program iltestian must be designated using specifi63
environment variables

Int.ExistenceFichier The existence or non-existesfce file must always be verified before the62
file is opened or created; actions to be perforimdte event of failure
must be provided for.

Int.FichierFermeture All open files must be clos¢dhe same algorithmic level: module, clags64
operation.

Int.GrouperES Input/output instructions of the sdgpe must be grouped together. 64

Int. Temporaire All temporary files created by thpplcation must be located in dedicated53
areas and destroyed at the end of execution, ddatidws.

Org.Couplage Linking between modules must be misgihi use links between modules 11
must be uni-directional and be fewer than a lireitfer the project.

Org.DonneesOper Data and operations must be grdogether in modules to form 10
consistent packages, by using the available resswfthe language.

Org.Duplication Code duplication must be avoidedrglligently using the techniques | 14
available at language level (passing parameteirsy abstract operations,
using metalanguages).

Org.Masquage Data usage links should be avoided: snd write-access operations | 12
should be used instead (information masking and eatapsulation
principle), when this principle is not overly prdjaial for the language
used.

Org.Matériellndep Codes that have dependencieshaittiware or operating system must hel6
kept separate from the rest of the software code.

Org.Module The code lay-out of each module musttbadardised for the project. 13

Org.ModuleNom A module name must convey the cona@pinit that the module 11
represents

Org.MultiLang When more than one programming largguare used for a project, 14
correspondence rules must be defined for the elenaxchanged betweep
the languages.

Org.Principal The main program must be limitedre highest-level control flow: 15
creating tasks, initialisation, sequencing. It st contain processing
algorithms or calculations.

Pr.Aeration The text in a program must be well-sga©perators and operands must17
be separated by spaces.

Pr.CartDonnée Each data declaration must be consghent 19

Pr.CartStd A standard comment box defined for tlogept must be used to comment19
on the header of each module and the definiticenabperation.

Pr.CommFonc Comments must be functional and ndtaip the code. 20

Pr.Commident Comments must be located in the saeseas the relevant code, and 20
indented at the same level as this code.

Pr.Indentation Code must be indented. A converfaomepresenting control structures | 17
must be defined and respected.

Pr.Instruction There should be no more than onguason per line. 17

Pr.LongLine The maximum number of characters ima of source code is less than a 18
limit defined for the project.

Qa.Algébre Algebraic identities which can accekexalculation must be used. 70

Qa.Branches In conditional instructions, the mosfiient and most simple branches | 67
must be processed before the others, in orderttaree performance.

Qa.Correlation Correlated quantities must be catedl simultaneously. 70

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-
Page 76
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

501

Id. Rule Title Page

Qa.Factorisation Execution time-consuming sub-esgioms must only be assessed once. 69

Qa.Instrumentation Code instrumentation (code,rasas) must be created using dedicated 71
operations. If the language does not offer thesgaijpns, a specific
module concerning them must be created.

Qa.Interruptions Software processing dedicateadtouanting for hardware interruptions | 69
must be as brief as possible.

Qa.OptionsCompill With a compiled language, the atatipn options that will highlight a 71
maximum number of compilation warnings should bedugach
unresolved warning must be justified.

Qa.Performances Effectiveness can be enhancedidbyirsg the possibilities made availables8
by the development environment (compiler, perforogaanalysis tools,
etc.)

Qa.Pile Stack consumption as compared to avaitpidatities must be carefully | 68
studied. In particular: local data, parameters @aibitree depth.

Qa.PortType The portability of base types shoulehgs be a concern. 65

Qa.RepérerPort The non-standard or non-portabieezies used must be identified and | 66
program functioning must be adapted if need be.

Qa.Ressources The software must be free of usefdoe details by using separate 65
graphical resources

Qa.ReutValide Only validated services may be reused 70

Qa.TestRetour Function return must be systematitadted, specifically system function67
return.

Tr.Booleen A complex conditional expression mustdgdaced by a unique Boolean| 47
that expresses a state.

Tr.BoucleSortie A loop must feature a unique norinaxat. 42

Tr.CalculStatique In compiled languages, it isduetb perform calculations on static 46
expressions at compilation, with maximum accuraagher than
dynamically calculated expressions.

Tr.Choix A choice instruction must be used ratlhanta simple conditional 40
instruction when there is more than one alternative

Tr.ComparaisonsStrict Strict comparison (equalifffedence) between floating numbers (real, | 38
complex) must be replaced by inequality.

Tr.ComparConst In a comparison with a constanty#treable must always be to the left of 48
the comparison operator.

Tr.ControleRacc If the language supports the canskprtcut forms of control must be | 39
used whenever appropriate.

Tr.DoubleNeg Double negatives must be avoided iol&m expressions. 47

Tr.FonctionSortie A function must only contain agét instruction. 44

Tr.Goto The unconditional branching instructiont@@anust only be used in very| 41
limited and specific cases.

Tr.MelangeType Different types of data should r®nfixed in the same expression. 48

Tr.ModifCompteur The loop counter must not be miedifin loop processing. 43

Tr.ModifCondSortie The loop exit condition must e modified in loop processing. 42

Tr.ModifConst The value of a constant must not loelifired. 39

Tr.ModifParSortie An operation must not modify ingarameters. 50

Tr.ModifVarGlobal A function must not modify the e of a global variable or involve 50
output parameters.

Tr.OrdreChoix When using a choice instruction palssible cases must be provided, | 40
preferably explicitly and in the "logical" order thfe cases.

Tr.OrdreParFormel The declaration order for forpeiameters must be standardised. 49

Tr.ParamOptionnel Optional parameters must notseel when defining an operation. 49

Tr.Parenthéses Expressions must be systematicallgsed in parentheses. 46

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL RNC-CNES-Q-HB-80-501
- Page 77
COMMON CODING RULES FOR Version 3

PROGRAMMING LANGUAGES 17 September 2009

Id. Rule

Title

Page

Tr.ParSortie

All output parameters for a procedutsst have received a value before| 51

the first processing condition, by initialisatiop tefault, if necessary. Th
same is true for variables used to return the vafwefunction.

11°

Tr.ProgDefensive Defensive programming, which imeslthe use of pre-conditions and | 45
post-conditions, should be preferred.

Tr.RecursifBord Recursivity is prohibited. 44

Tr.RecursifSol Recursive operations must not bel usdess they are conceptually 43
simpler than an equivalent iterative operation.

Tr.Residus No programming residue must exist aswents in the code: an 46

instruction that is no longer used must be deleted.

Tr.TestEgalite

Use of the equality or differencst t@ust be replaced by inequality where38

possible.

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL

RNC-CNES-Q-HB-80-501

COMMON CODING RULES FOR

PROGRAMMING LANGUAGES

Page 78

Version 3

17 September

2009

8.2. "COMMON" TRACEABILITY

This table provides the correspondence betweerutee set out in this document and the rules fanrldnguage manuals. It contains the same numbleres as rules in this
document, and as many columns as there are languagaals. The cells are empty if the common rufetanentioned in the language manual; otherwislés contain the list
of rules in the language manual which are coveyeithd common rule.

Rule /
Language ON-BOARD ADA
(Version) ADA (5) (3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)
Don.AllocDynbord MEM (1) EMBED-malloc
Don.AllocDynSol Memory.Allocation
Don.AllocEchec Excep.Allocation
Donc.AllocErreur Excep.Free
Don.AllocLiberation Pointer.FREE-
MEMORY;Routines
CO.DAT-FreeDyn MEM (1) .VARIABLESHEAP
Don.ChaineOper Prog_CompStr_1
Don.Declaration CO.DAT(1);CO.DA
CO.DAT-Vis CO.DAT-Vis T(4) DECL(1) Prog_Declvar_1
Don.Enumeration CO.DAT(1);CO.DA Const.Define;Sema Constant.DEFINITI
Types.Enumerated | DECL(7) CO.DAT-Lit T(2) DATA(1) ntic.Enum MAINT-Const
Don.Homonymie Identifiers.Homony Routines.UNIQUE-
ms IDENT (10) CO.DAT-VarRedef NAME(2) NAME
Don.Initialisation Variables.Initialisati VARLOC-
on DECL (9) CO.DAT-Inivar CO.DAT-InivVar CO.DAT(5) DATA(7) Data.InitLocal Initialisation ENV-5 COMMON(3)
Don.Invariant Expression.INVARI
ANT;Constant.DEFI
Constants.Definition | DECL (10) CO.DAT-Lit DATA(3) Const.Literal NITION
Don.Localite CommonBlock.AVO
VARLOC- ID;;CommonBlock.
DECL(10);DECL(14 | Data.Local;Data.Pro | Proximity;OPTIM- POSITIONAL-
Variables.Block MISC(6)) Ximity AccessVars VAR-5;ENV-1 COMMON(4) PARAMETER-1
Don.LocalUnique VARLOC-Utilisation
Data.PointeurNonAff DECL(13)
Don.Separee Data.DeclSeparate | VARLOC-Line
Don.Structure CO.DAT-
Lit;CO.DAT- Structure.MINIMISA
TypConst DATA(5) TION
Don.TableOper Instructions.CopyTa
bles Table.EQUALITY
Don.TablePrincipe CO.DAT(9) TABLE(5) Table. PATH
Don.Typage CO.DAT-TypVar EMBED-types-use DECL(2)
Don.TypeAnonyme CO.TY-Def,CO.TY-
Types.Declaration DECL (1) ComplLit
Don.Utilisee CO.DAT(6) DATA(9) Prog_lInitVar_1
Dyn.Abort Tasks.Abort TASK (8) CD.SG(3)
Dyn.AttenteActive Tasks.ActiveLoop TASK (6)
Dyn.OS Thread.Configuratio Routines.MULTITH
KERNEL (5) n READING
Dyn.Partage Thread.Sharing
Dyn.PrioRelatives Tasks.Priority TASK (3)

Dyn.Ressources

Thread.Resources

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL

RNC-CNES-Q-HB-80-501

COMMON CODING RULES FOR

PROGRAMMING LANGUAGES

Page 79

Version 3

17 September 2009

Rule /
Language ON-BOARD ADA
(Version) ADA (5) (3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)
Dyn.SectionCritique THREAD-
KERNEL (4) Encapsulate
Err.Canal 1/10-5
Err.FinOperation Exceptions.Regroup
ing
Err.Impression Exceptions.Failure EXCEPT (1) Prog_TraceErr_1
Err.IntegriteDonnee Excep.Integrity
Err.Mecanisme Routines.REPORT;
Errors.ON_ERROR-
ERR-1;ERR-2;ERR- ERROR(1);ERROR | ON_IOERROR;Erro
Exceptions.Failure EXCEPT (5) CD.PRO-ErrMgt EXEP(1) Excep.Strategy METH-Return 3 Prog_CodeErr_1 2) rs.CATCH
Err.Nom Identifiers.Exception
5 IDENT (9)
Err.Operation INSTR (5) EXCEPT
3) Excep.Proce EXCEP-CatchUse
Err.ToutesTraitées EMBED-Interruptions Excep.Terminate
Err.TraitementDiff Exceptions.Failure EXCEPT (1)
Id.ClasseType CommonBlock.NA
Identifiers.Types IDENT (2) CO.TY-NameTyp NAME-Class STRUCT(8) MING
1d.ConstSignif CO.DAT-
Identifiers.Constant NameConst;CD.PP-
s DECL (11) NameMacro NAME-Constant
Id.Fonction NAME-
Identifiers.Functions | IDENT (6) CP.SG-NameFunc AccessAttribute FILE-3 Name_I|dFunc_1 Routines.NAMING
Id.IdentRegle IDENT (2) ; IDENT
Identifiers.Undersco | (3) ;IDENT (12) ; STYLE-Language; CommonBlock.NA
re FILE(2) CO.PRE(6) NAME(4) Name.General NAME-Default Name_idCons_1 MING
Id.IdentSignif Identifiers.Naming;
Identifiers.Descriptive]
ness IDENT (1) CO.PRE(6) Name.General NAME-Explicit Name_Descrild_1 STRUCT(7)
Id.NomDonnee
Id.NomParFormel Identifiers.FormalPa
ram IDENT (13)
Id.Pointeur Identifiers.Pointers IDENT (8)
Id.Procedure CP.SG-
Identifiers.Procedur FuncNam;CD.PP- NAME-
es IDENT (5) MacroName Name.PrivateData AccessAttribute FILE-3 Routines.NAMING
Id.Tache Identifiers.Procedur
es IDENT (5)
Id.VarSignif Identifiers.Variables | IDENT (4) CO.DAT-VarName VAR-2 Name_ldVar_1 Variable.NAMING1
Id.VarType STRUCT(8);STRUC
Identifiers.Variables CO.DAT-VarName Name_ldVar_1 T(9) Variable. NAMING1
Int.CheminAbsolu ENV-3
Int.CheminFichier File.AccessPath CD.|10-FileParam
Int.Environement PORTAB-ConstFlat | ENV-4 STRUCT(11)
Int.ExistenceFichier
Int.FichierFermeture 1/10(3) |_O.CLOSURE
Int.GrouperES CO.10-10Group CO.10(3)
Int. Temporaire 1/0-1;1/0-2
Org.Couplage CO.DAT- CommonBlock.SHA
Packages.Linking NbGlobVar MOD(2) COMMON(2) RING
Org.DonneesOper Packages.Design PACKAGE (1) DECL(5) ORGANI-Package FILE-5

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL

RNC-CNES-Q-HB-80-501

COMMON CODING RULES FOR

PROGRAMMING LANGUAGES

Page 80

Version 3

17 September 2009

Rule /
Language ON-BOARD ADA
(Version) ADA (5) (3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)
Org.Duplication Function.Inline;Meta
.Techniques;Meta.C
CD.PP-InlineFunc EMBED-Inline oding
Org.Masquage Packages.Specificat | PACKAGE
ion (3);RISQ (3) MOD(4) Encap.MemberData | CLASS-DataProtect
Org.Matérielindep PORTAB-INOUtETrT;
PORTAB-GUICapa,
CD.DV-SeparPort PORT(2) PORTAB-Limit Prog_SysSpec_1
Org.Module Presentation.ROUT
INE;
Presentation.STRUC
TURES-CONTROL;
Pres_OrgMod_1; STRUCT(2);STRUC | Presentation.FILE-
Orga.Order;Orga.Pr Pres_OrgScript_1; T(3):STRUCT(4);ST | BATCH;Presentatio
CD.SG(1) PRES(4) esFunc Pres_OrgFunc_1 RUCT(6) n.MODULE
Org.ModuleNom Identifiers.Packages Name_ldMod_1;
;File.Naming IDENT (7) ; FILE(2) | CP.SG-FileRole NAME(1):MOD(1) Name.Files FILE-1 Name_ldScript_1 STRUCT(1) Naming.SUFFIX
Org.MultiLang COMM(5)
Org.Principal CD.SG(5) PROG(1)
Pr.Aeration CO.EX- Pres_Space_1;Pres
Presentation.Spacin UnaryOp;CO.EX- _NoSpace_Pres_Li
g MISC(10) BinaryOp CO.PRE(5) DOC-Layout neSep_1 STRUCT(6)
Pr.CartDonnée CO.PRE-CommVar DOC-Layout STRUCT(6)
Pr.CartStd Presentation.Heade CO.PRE(1);CO.PR Pres_FuncHeader_ Presentation.ROUT
r PRES (7) CP.PRE-Box E(2) Organ.Header DOC-Layout COMT-1;COMT-2 1 STRUCT(6) INE
Pr.CommFonc Comments.Autodoc
;Comments.Interpre
tation; Types.Comm CO.PRE- Instruction. COMME
ents COMM (1) CommFunc CO.PRE(11) NT
Pr.Commldent CO.PRE-
Comment.Indentatio Commldent;CO.PR
n COMM (2) E-CommFBlo CO.PRE(10) DOC-Layout
Pr.Indentation Pres_Indent_1;Pres
_Bracket_1;Pres_Ali
Presentation.Indent gnCode_jPres_Pos
ation PRES(1) CO.PRE-Indent FILE-6 Else_1 STRUCT(6)
Pr.Instruction Expression.PRESE
CO.PRE- NTATION;
Presentation.Simple Multinstr;CO.PRO- CO.PRE(4);CO.PR Presentation.STRUC
Instr InstrLim E() PRES(3) Pres_LongLine_1 TURES-CONTROL
Pr.LongLine Presentation.LgLine
;Presentation.Trunc Pres_LongLine_1;
ation PRES (3);PRES (4) | CO.PRE-LineLim Pres_ComLong_1
Qa.Algébre Expression.|IDENTI
TY
Qa.Branches Instruction.CASE/S
WITCH-
CLASSIFICATION
Qa.Correlation Expression.REGRO
UPING
Qa.Factorisation OPTIM-SubExpr; Expression.FACTO
OPTIM-InvLoop RISING
Qa.Instrumentation
Qa.Interruptions EMBED-

Proce_interrup

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL

RNC-CNES-Q-HB-80-501
Page 81

COMMON CODING RULES FOR

PROGRAMMING LANGUAGES

Version 3

17 September 2009

Rule /
Language ON-BOARD ADA
(Version) ADA (5) (3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++ (4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)
Qa.OptionsCompil EMBED-
OptionComp Prog_UseWarn_1
Qa.Performances Function.Conf OPTIM-9010
Qa.Pile EMBED-
Stack;EMBED-
NbArg;EMBED-
StackSize;EMBED-
VarAuto
Qa.PortType EMBED- Type.RedefTypeBa
Types.Pre-defined DECL (3) Types_int_float se
Qa.RepérerPort
Qa.Ressources GUI(4);GUI(8);GUI(
PORTAB-GUIFonts 9);GUI(10)
Qa.ReutValide PORTAB-
CP.DV-Reuse EMBED-Library DependAP Prog_PortCallSys_1
Qa.TestRetour KERNEL (2) CD.PRO-RetUse STRUCT(16) Routines.REPORT
Tr.Booleen Expressions.Compl
exCondition
Tr.BoucleSortie CO.PRO- Instruction.FOR-
Instructions.Exit BreakLoop CO.PRO(9) FLC(5);FLC(7) CTRL-3 BREAK
Tr.CalculStatique Expressions.Static MISC(2)
Tr.Choix Instructions.Multiple EMBED-
Choice INSTR (1) switch_case CO.PRO(5) FLC(3)
Tr.ComparaisonStrict| Instructions.Floating
Equality CO.DAT-CompFloat CO.EX(2) EXP(2) Variable.EQUALITY
Tr.ComparConst CO.PRE-
CompConst
Tr.ControleRacc Expressions.Shortc
utCtrl EMBED-for
Tr.DoubleNeg Expressions.DbleN
egations
Tr.FonctionSortie SubProgram.Return | SPROG(9) CD.PRO-Exitl CD.SG(3) STRUCT(15) Routines.EXIT
Tr.Goto CO.PRO(6);CO.PR
Instructions.Goto INSTR (3) CO.PRO-Goto 0O(7);CO.PRO(5) FLC(9) Control.Goto STRUCT(18) Instruction.GOTO
Tr.MelangeType CO.TY-Conv CO.TY(4) DATA(10)
Tr.ModifCompteur Prog_ModForeach_ Instruction.FOR-
CO.PRO-ForInd CO.PRO(9) FLC(6) CONTR-ForParam | CTRL-2 1 CONSERVATION
Tr.ModifCondSortie CONTR-
CO.PRO-ForCond CO.PRO(9) FLC(6) ForCondition
Tr.ModifConst Constant. CONSER
TYPE(3) VATION
Tr.ModifParSortie SystemVariable.CO
EMBED- NSERVATION;Posi
ArgValue ;EMBED- CO.PA(1);CO.PA(6 Function.ConstRefe tioningParameter.N
SPROG(4) ArgAddress) r STRUCT(17) ATURE
Tr.ModifvarGlobal SystemVariable.CO
NSERVATION;Rout
SubProgr.Function; ines.MODIFICATIO
SubProgr.GlobalVar | MISC(5) CO.PA(8) PAS(9) COMT-4 STRUCT(17) N-PARAMETER
Tr.OrdreChoix Instructions.Enumer
ationChoice;Instruct ICO.PRO-
ions.OtherChoice INSTR (2) DefaultCase FLC(4);FLC(8) ICONTR-Default CTRL-1
Tr.OrdreParFormel | SubProg.ParOrder SPROG(1) EMBED-ArgValue CO.PA(3) PAS(8) PARAM(1)

Check the RNC site before using to ensure that the version used is the applicable version.

é cnes

MANUAL

RNC-CNES-Q-HB-80-501

COMMON CODING RULES FOR

PROGRAMMING LANGUAGES

Page 82

Version 3

17 September 2009

Rule /
Language ON-BOARD ADA
(Version) ADA (5) (3) C (6) ON-BOARD C (2) FORTRAN 77 (4) FORTRAN 90 (2) C++(4) JAVA (4) SHELL (3) PERL (1) PVWAWE (2) IDL (1)

Tr.ParamOptionnel

ISubProg.ParamBy

IPARAM(3);lPARA

Default ISPROG (5) SPRO(5) M(4);PARAM(5)
Tr.Parentheses Expressions.Priority Expression.PAREN
Order EXPR (1) CO.EX(1) EXP(1) INSTR (1) THESES
Tr.ParSortie SubProg.OutValue | SPROG(6)
Tr.ProgDefensive SubProg.Defensive Function.PrePostCo
Tests nd ARGS-3,CTRL-8 STRUCT(16)
Tr.RecursifBord RISQ (4)
Tr.RecursifSol SubProg.Recursivit Routines.ITERATIV
y SPRO(4) E
Tr.Residus Pres_DebugClean_
CD.SG(4) 1
Tr.TestEgalite MISC(8)

Check the RNC site before using to ensure that the version used is the applicable version.

cnNnes

STANDARDS REFERENCE PRODUCED BY:

Centre National d’Etudes Spatiales
Inspection Générale Direction de la Fonction Qualité
18 Avenue Edouard Belin
31401 TOULOUSE CEDEX 9
Tel.: +33(0)5 61 27 31 31 - Fax: +33(0)561 28 28 49

CENTRE NATIONAL D'ETUDES SPATIALES

Headquarters: 2 pl. Maurice Quentin 75039 Paris cedex 01 / Tel: +33 (0)1 44 76 75 00 / Fax: 01 44 46 76 76
Paris Trade & Companies Registry No. B 775 665 912 / Business Registration No: 775 665 912 00082 / Business Sector Code 7312

