
Check the RNC site before using to ensure that the version used is the applicable version.

CNES
STANDARDS REFERENCE

Reference: RNC-CNES-Q-HB-80-535
Version 1
11 May 2009

Manual

CODING RULES FOR
PYTHON LANGUAGE

APPROVAL of
Standardisation Office

BN no. 54 dated 16/09/09

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 3

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

DOCUMENT ANALYSIS PAGE

TITLE: CODING RULES FOR PYTHON LANGUAGE

KEYWORDS: Language, Script, Python, Rule, Standard, Programming

EQUIVALENT STANDARD: None

REMARKS: None

ABSTRACT: This document sets out the programming rules applicable to any project that includes scripts
developed in the Python language.

DOCUMENT STATUS: This document is part of the collection of approved Manuals in the CNES
Standards Reference. It is affiliated to standard RNC-ECSS-Q-80 "Software Quality Assurance".

NUMBER OF PAGES: 24 Language: English (translated from the original
French)

SOFTWARE PACKAGES USED / VERSION: Word 2007

MANAGING DEPARTMENT: General Inspectorate and Quality Directorate (IGQ)

AUTHOR(S):

Anne-Thérèse NGUYEN (DCT/AQ/SO)

PROOFREADING / CHECKING:

Jean-Charles Damery

© CNES 2009

Reproduction strictly reserved for the private use of the copier, not intended for collective
use (article 41-2 of Law No. 57-298 of 11 March 1957).

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 4

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

DOCUMENT REVISION SHEET

VERSION DATE PAGES MODIFIED REMARKS

1 11/05/2009 Following FEB 91/2009 accepted in BN
no. 54 dated 16/09/09, document
introduced in the CNES Standards
Reference (RNC) of manual RNC-
CNES-Q-HB-80-535.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 5

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

TABLE OF CONTENTS

1. INTRODUCTION...6

2. PURPOSE..6

3. SCOPE ...6

4. DOCUMENTS...7

4.1. REFERENCE DOCUMENTS ...7
4.2. APPLICABLE DOCUMENTS..7
4.3. OTHER DOCUMENTS..7

5. TERMINOLOGY ...8

5.1. GLOSSARY...8
5.2. ABBREVIATIONS..9

6. COMPLIANCE WITH RELEVANT SPECIFICATIONS AND STANDARDS9

7. RULES ...10

7.1. CODE ORGANISATION..10
7.2. CODE PRESENTATION..13
7.3. IDENTIFIERS...13
7.4. DATA ..14
7.5. PROCESSING..15
7.6. ERROR MANAGEMENT...16
7.7. DYNAMIC ..17
7.8. INTERFACES...17
7.9. QUALITY ...18
7.10. OTHER RULES..19

8. OTHER SPECIFIC LANGUAGE ASPECTS ...21

9. SUMMARY ...22

9.1. RULE SUMMARY TABLE ..22

APPENDIX: SAMPLE PYTHON CODE PRESENTATION..23

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 6

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

1. INTRODUCTION

The document "Coding Rules for Python language " is affiliated to standard RNC-ECSS-Q-80 "Software Quality
Assurance". It sets out the applicable rules for scripts developed using the Python language.

2. PURPOSE

The aim of this manual is to establish the rules and recommendations for using the Python language to develop
elaborate scripts. These rules and recommendations have been drawn up based on the “state of the art” and the
“lessons learned” accumulated over the projects.

This document is not a reference manual for the Python language, nor does it address the interactive aspects of the
command interpreter. Knowledge of the Python language is a pre-requisite for using this document.

The reader should note that the vocabulary used for Python differs slightly from that used for other object-oriented
languages. The definitions of the terms used herein must be learned in order to avoid incomprehension when
reading this manual.

3. SCOPE

This document applies to information system development and maintenance, as regards sections programmed in
Python. It is supplemented by the document "Règles communes pour l’utilisation des langages de programmation"
[Common rules for using programming languages] (AD1).

Follow the procedure below to use the Python rules on a project:

• Select the common rules, the Python rules and the rules applicable to the project according to tailoring
criteria; this selection should be made using the tailoring tool.

• Adapt certain rules to the project.

The document is thus intended for more than one type of reader:

• The Project Manager who must correctly specify the Python application to be developed,
• The Project Manager and/or Quality Engineer, whose responsibility is to select the rules and possibly

adapt and complete them in accordance with the project context,
• The personnel responsible for completing the project: who must apply the selected rules.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 7

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

4. DOCUMENTS

4.1. REFERENCE DOCUMENTS

RD Identification Title

(RD1) RNC-ECSS-Q-ST-80 Software Product Assurance

4.2. APPLICABLE DOCUMENTS

AD Identification Title

(AD1) RNC-CNES-Q-HB-80-
501

Common rules for using programming languages

4.3. OTHER DOCUMENTS

• Core Python Programming, Version 2.5 – Wesley J.Chun - Editions CampusPress
• PEP 8 Style Guide for Python Code – Guido van Rossum - http://www.python.org/peps/pep-0008.html
• PEP 352 Required Superclass for Exceptions - Guido van Rossum, Cannon –

http://www.python.org/peps/pep-0352.html
• PEP 308 Conditional Expressions – Guido van Rossum, Hettinger –

http://www.python.org/peps/pep-0308.html
• PEP 3000 Python 3000 – Guido van Rossum - http://www.python.org/peps/pep-30000.html
• PEP 257 Docstring Conventions – David Goodger - http://www.python.org/peps/pep-0257.html
• PEP 287 reStructuredText Docstring Format – David Goodger - http://www.python.org/peps/pep-0287.html
• Python Style Guide – Guido van Rossum – http://www.python.org/doc/essays/styleguide.html
• Python Reference Manual – Guido van Rossum – http://docs.python.org/ref/ref.html
• Python tutorial - Guido van Rossum - http://docs.python.org/tut/tut.html
• Python library reference – Guido van Rossum - http://docs.python.org/lib/lib.html

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 8

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

5. TERMINOLOGY

5.1. GLOSSARY

Term Definition

Docstring A docstring is a string of characters in quotation marks that is used to describe
the code. A docstring is typically used to describe a module, a class, a function
or method, a data attribute or a variable.

Module A Python module contains blocks of code to be executed, as well as function and
class declarations. Generally, all files containing Python code are considered as
modules. The file name is consequently the same as that of the module
completed by the file extension ".py".

A module may be executed as script or be imported into other Python code.
Unlike in other languages, for which classes may be imported, in Python, only
modules may be imported.

Package A packages groups together a series of modules and sub-packages. In particular,
each package or sub-package contains a module _init_, which handles
initialisation during import.

Object A Python object is an element with a unique identifier (memory address), type
and value. It may be a number, character string, list, function, method, module,
class, file etc.

If objects have attributes, these attributes are accessed using pointed notation.

Class A class is a programmed form of real-world abstraction. In practical terms, in
Python, it is a data structure with behavioural characteristics. It plays the role of
a template (model) for creating "real" objects, called instances. A class has both
data attributes and function attributes (methods).

Class attribute A class attribute is a data attribute or method that may be accessed without
having to create an instance. This name is equivalent to the "static" concept,
which is more commonly used in C++ and Java.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 9

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

5.2. ABBREVIATIONS

OO Object-Orientated

6. COMPLIANCE WITH RELEVANT SPECIFICATIONS AND STAN DARDS

The rules set out in this document conform to version 2.5 and prepare Python version 3.0.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 10

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

7. RULES

7.1. CODE ORGANISATION

Org.InstrucClasse

M=3;R=1;P=43;V=1

Any

Class instructions must all be contained in the class method definitions.

Description

A Python class may contain code that is not in the method. This code is consequently executed when the
module containing the class is loaded. This possibility must be avoided of language must be avoided.

Justification

This rule enhances code readability and complies with object-orientated programming encapsulation.

Example

The following example should be avoided:

class ClassName:
 <instruction-1>
 .
 .
 .
 <instruction-N>

Prefer the use of:

class ClassName:
 def function(self) :
 <instruction-1>
 .
 .
 .
 <instruction-N>

Org.DeclAttributs

M=3;R=1;P=43;V=1

Any

All data attribute declarations for a class must be grouped together.

Description

A Python class data attribute must not be declared just anywhere in the class. An area containing all
declarations must be defined.

Justification

This rule enhances code readability.

Example

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 11

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

The following example should be avoided, because it declares the data attributes __coordX, __coordY,
__coordZ and __phi in different areas:

class ClassName :

 def __init__(self,x,y,z) :
 self.__coordX = x
 self.__coordY = y
 self.__coordZ = z

 def setPhi(phi) :
 self.__phi = phi

Use the following example, in which all data attributes are declared in the initialisation method:

class ClassName :

 def __init__(self,x,y,z,phi) :
 self.__coordX = x
 self.__coordY = y
 self.__coordZ = z
 self.__phi = phi

 def setPhi(phi) :
 self.__phi = phi

Org.DeclVariables

M=3;R=1;P=43;V=1

Any

A local variable for a function (block resp.) must be declared at the beginning of the
function (block resp.).

Description

Local variables must not be declared just anywhere in the function or block. They must be declared at the
beginning of the function.

Justification

This rule enhances code readability.

Example

The following implementation should be avoided:

def calculationPhi(alpha) :
 . . .
 theta = 90 + alpha
 . . .
 phi = theta + . . .
 return phi

Prefer the use of:

def calculationPhi(alpha) :
 phi = 0
 theta = 0

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 12

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

 . . .
 theta = 90 + alpha
 . . .
 phi = theta + . . .
 return phi

Org.Elif

M=3;R=0;P=75;V=2

Any

The form elif must be used in place of else: if.

Description

Python does not feature the control structure switch , which is available in Java or C++. Use of a switch in
Python involves using several nested if / else if structures. The elif form must be used to code this type of
control structure.

Justification

Using elif reduces the level of indentation and enhances code readability.

Example

The following implementation should be avoided:

if xSquared < 0 :
 print “xSquared is negative – reset”
 xSquared = 0
else :
 if xSquared == 0 :
 print “ xSquared is null"
 else :
 if xSquared > 0 :
 print “ xSquared is positive"
 else :
 raise ...

Prefer the use of:

if xSquared < 0 :
 print “xSquared is negative – reset”
 xSquared = 0
elif xSquared == 0 :
 print “ xSquared is null"
elif xSquared > 0 :
 print “ xSquared is positive"
else :
 raise ...

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 13

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

7.2. CODE PRESENTATION

Pr.Comment

M=2;R=1;P=79;V=2

Any

Modules, classes, methods, attributes and functions must be commented using
docstrings.

Description

As with any program, regardless of its language, code must be commented in order for it to be maintained.
Python offers various ways to include comments in the code: "#", as with most Unix-based script languages,
and/or docstrings. In addition to these functional comments, each module, class, function or attribute must be
specifically commented using the docstring mechanism.

Justification

Docstrings are special strings of characters. They may be accessed during execution and may be used to
automatically generate documentation, much like "javadoc" is used for the Java language.

Example

See Appendix.

7.3. IDENTIFIERS

Id.Attributs

M=3;R=3;P=4;V=1

Any

In a class, a data attribute must not have the same name as a method attribute.

Description

Not Applicable

Justification

If a data attribute and a method attribute have the same name in a class, the data attribute will mask the method
attribute, which will subsequently never be called.

Example

Not Applicable

Id.AttributPrive

M=2;R=2;P=30;V=1

Any

In a class, the name of a private attribute must begin with two underscores.

Description

Not Applicable

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 14

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

This mark allows the interpreter to distinguish private attributes from other attributes.

Example

Not Applicable

Id.Fichier

M=2;R=0;P=105;V=2

Any

A file containing Python code must have the extension ".py".

Description

Not Applicable

Justification

The extension ".py" is used by convention. It allows Python code to be distinguished from code written in
another language.

Example

Not Applicable

7.4. DATA

Don.DeclAttribut

M=2;R=1;P=45;V=1

Any

All data attributes must be private by default.

Description

In Python, class attributes are public by default. They may be directly accessed in the module or in another
module that imports this module. To ensure data encapsulation, every data attribute that does not require
specific visibility is explicitly declared as private.

Justification

This rule improves data encapsulation. Furthermore, declaring private attributes avoids conflict with derived
class name spaces: during execution, private attributes are renamed to include the name of the class.

Example

In Python, a private attribute has a name that begins with a double underscore (__).

Declaration of a private attribute of a class
class MyClass :
 def __init__(self) :

 __num = 0

During execution, the attribute may only be accessed using the name of the attribute changed into
_MyClass__num .

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 15

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Don.VarCoherente

M=3;R=2;P=80;V=0

Any

The data stored by the same variable must be physically/typologically consistent
throughout the entire program.

Description

Python does not restrict the reuse of a variable in a program for storing a different type of data. However, this
possibility must not be used.

Justification

Enhances code readability and reliability.

Example

Do not write:

angle = 90
...
angle = "rectangle"
...

Prefer the use of:

angle = 90
...
angleName = "rectangle"
...

Don.ListeCoherente

M=3;R=2;P=80;V=0

Any

Data stored in a list must be physically/typologically consistent.

Description

An extension of the rule Data.ConsistentVar to lists.

Justification

Enhances code readability and reliability.

Example

Do not write:

angles = [0, "rectangle", 180, 360]

Prefer the use of:

angles = [0, 90, 180, 360]

7.5. PROCESSING

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 16

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Tr.Definition

M=3;R=2;P=45;V=0

Any

All the methods of a class must be explicitly defined within the class.

Description

The Python scripting language is quite permissive. For example, it is possible not to explicitly define a method
within a class by pointing it to a global function (see example).

Justification

Declaring a method outside the scope of class definition has some disadvantages:
- It impacts code readability;
- It is not compatible with the packaging concept used in OO languages;
- It adds a global function and occupies naming space by adding a new name.

Example

The following example should not be used:

Method defined outside of class
using a global function

def f1(self, x, y):
 return min(x, x+y)

class C:
 f = f1
 def g(self):
 return 'hello'

Use the following implementation:

Method defined explicitly in the class

class C:

 def f(self, x, y):
 return min(x, x+y)

 def g(self):
 return 'hello'

7.6. ERROR MANAGEMENT

Err.ExpressionExcept

M=1;R=2;P=95;V=2

Any

The "except : " instruction should not be used without specifying the exception that
will be treated.

Description

Python allows the "except : " instruction to be used alone. However, this possibility must not be used.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 17

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Justification

Using this instruction without specifying the exceptions causes all signals from the system, including control
signals, to be intercepted.
This rule allows the scope of exception processing to be managed.

Example

Not Applicable

Err.ExcepChaine

M=2;R=1;P=95;V=2

Any

An exception must not be a character string.

Description

The "raise" instruction must not be associated with a character string.

Justification

This possibility, which was tolerated up until now, will not be maintained in subsequent versions of the
language.

Example

 Do not write:

If error :
 raise "The program encountered an error"

7.7. DYNAMIC

Not applicable.

7.8. INTERFACES

Int.FoncUsage

M=3;R=0;P=110;V=1

Any

Python scripts must offer an online help function associated with the "--help" option.

Description

By convention, the "--help" option is defined in most scripts. It provides information on correct use and on the
script functions available. It serves as an online user manual.

Justification

This rule makes the script even easier to use.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 18

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Example

Not applicable.

7.9. QUALITY

QA.EspaceTabulation

M=3;R=3;P=10;V=2

Any

Use of the tab character is prohibited. The space character must be used for
indentation.

Description

Not Applicable

Justification

Tabs must be avoided, because the tab character is not the same length in all editors. It may be used if the tab is
configured according to a specific number of spaces.

Example

Not applicable

QA.OptionTabulation

M=3;R=3;P=11;V=0

Applet

The interpreter's "-tt" option must be used.

Description

Not Applicable

Justification

This option detects the combination of tabs and spaces, which adversely impacts code readability.

Example

Not applicable.

QA.Instruction

M=3;R=1;P=75;V=2

Any

The ":" character must not be followed by an instruction on the same line.

Description

Processing instructions must not be written on the same line as the expressions
if/elif/else/for/while/def/class/except.

Justification

This rule enhances code readability.

Example

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 19

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

The following code is not very readable:

If coordX > Threshval : calculateMatrixError()
For x in Vallist : total += x
While time < 10 : t = delay()

It should be written as follows:

If coordX > Threshval :
 calculateMatrixError()
For x in Vallist :
 total += x
While time < 10 :
 t = delay()

QA.Parenthèses

M=3;R=2;P=42;V=0

Any

Conditional expressions used to assign variables must be enclosed in parentheses.

Description

Assignment must be written as: X = (value_true if condition else value_false)

Justification

This rule enhances code readability.

Example

First version : no parentheses
level = 1 if debug else 0
Second version : with parentheses
level = (1 if debug else 0)

The first version is difficult to understand because it is ambiguous: the reader may group together "level = 1",
"if debug", "else 0".

7.10. OTHER RULES

Gen.Yield

M=1;R=3;P=12;V=1

Any

The "yield" instruction is not authorised in the try block of a try/finally construction.

Description

Not Applicable

Justification

In this type of construction, the execution of the instructions contained in the finally block cannot be
guaranteed.

Example

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 20

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Not Applicable

Dec.Declaration

M=2;R=2;P=75;V=0

Any

A static method must be declared by a decorator.

Description

Not Applicable.

Justification

Declaring a static method using the former syntax is less readable.

Example

The following example should not be used because with long static methods, the static declaration at the very
end is not very visible.

class C:
 def meth (cls):
 ...

 meth = classmethod(meth) # Rebind name to wrap ped-up class method

Prefer the use of a decorator:

class C:

 @classmethod
 def meth (cls):
 ...

Dec.Limitation

M=2;R=2;P=75;V=0

Any

Decorator stacking is allowed but its use must be limited.

Description

Not Applicable.

Justification

Readability and comprehension.

Example

Not Applicable.

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 21

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

Bib.Duplication

M=3;R=1;P=24;V=0

Any

Functionalities that are already provided in the Python reference library must not be
developed.

Description

Not Applicable.

Justification

Saves resources for code development and maintenance.

Example

Not Applicable.

Py.Python3000

M=3;R=1;P=25;V=1

Any

All new developments must conform to Python 3.0 syntax.

Description

Not Applicable.

Justification

Because Python 3.0 syntax differs from that of Python 2.*, taking this into account will prevent eventual
significant porting problems.

Example

Not Applicable.

8. OTHER SPECIFIC LANGUAGE ASPECTS

Not applicable

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 22

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

9. SUMMARY

9.1. RULE SUMMARY TABLE

The rules are summarised below, in alphabetical order.

Rule ID Title Page
Org.InstrucClasse Class instructions must all be contained in the class method

definitions.
10

Org.DeclAttributs All data attribute declarations for a class must be grouped
together.

10

Org.DeclVariable A local variable for a function (block resp.) must be declared at
the beginning of the function (block resp.).

11

Org.Elif The form elif must be used in place of else: if. 13
Pr.Comment Modules, classes, methods, attributes and functions must be

commented using docstrings.
13

Id.Attributs In a class, a data attribute must not have the same name as a
method attribute.

13

Id.AttributPrive In a class, the name of a private attribute must begin with two
underscores.

13

Id.Fichier A file containing Python code must have the extension ".py". 14
Don.DeclAttribut All data attributes must be private by default. 14
Don.VarCoherente The data stored by the same variable must be

physically/typologically consistent throughout the entire
program.

15

Don.ListeCoherente Data stored in a list must be physically/typologically consistent. 15
Tr.Definition All the methods of a class must be explicitly defined within the

class.
16

Err.ExpressionExcept The "except : " instruction should not be used without specifying
the exception that will be treated.

16

Err.ExcepChaine An exception must not be a character string. 17
Int.FoncUsage Python scripts must offer an online help function associated with

the "--help" option.
17

QA.EspaceTabulation Use of the tab character is prohibited. The space character must
be used for indentation.

18

QA.OptionTabulation The interpreter's "-tt" option must be used. 18
QA.Instruction The ":" character must not be followed by an instruction on the

same line.
18

QA.Parenthèses Conditional expressions used to assign variables must be
enclosed in parentheses.

19

Gen.Yield The "yield" instruction is not authorised in the try block of a
try/finally construction.

19

Dec.Declaration A static method must be declared by a decorator. 20
Dec.Limitation Decorator stacking is allowed but its use must be limited. 20
Bib.Duplication Functionalities that are already provided in the Python reference

library must not be developed.
21

Py.Python3000 All new developments must conform to Python 3.0 syntax. 21

Manual

Coding Rules for Python language

RNC-CNES-Q-HB-80-535

Page 23

Version 1

11 May 2009

__

Check the RNC site before using to ensure that the version used is the applicable version.

APPENDIX: SAMPLE PYTHON CODE PRESENTATION

The example below features a structure that is often used in written Python code. The order is as follows: starting
line, module documentation, module importing, global variable declarations, class declarations, function
declarations, main program. It also illustrates the use of docstrings to comment modules, classes, methods,
attributes and functions.

#!/usr/bin/env python

""" This module is a test module """

#________________ IMPORT _________________________
import sys
import os

#________________ Global Variables _____________
test = True

#________________ Class Definition __________

class MyClass(object):
 """ MyClass is a test class

"""

 __totalInstances = 0
 """ __totalInstances is a class attribute

"""

 def __init__(self,name):
 self.__nameInstance=name
 """ __nameInstance is an instance attribute

"""

 self.__class__.__totalInstances += 1
 print 'There are', self.__class__.__totalInstance s,' instances'
 print 'The last instance is called ', self.__name Instance

#_________________ Global Functions ______________
def test() :
 """ test is a test function

"""
 if test :
 print 'test function'
 instance1 = MyClass("Raspberry")
 instance2 = MyClass("Blueberry")

#_________________ Main ___________________________ _
if __name__ == '__main__' :
 test()

STANDARDS REFERENCE PRODUCED BY:

Centre National d’Etudes Spatiales
Inspection Générale Direction de la Fonction Qualité

18 Avenue Edouard Belin
31401 TOULOUSE CEDEX 9

Tel.: +33 (0)5 61 27 31 31 - Fax: +33 (0)5 61 28 28 49

CENTRE NATIONAL D'ETUDES SPATIALES

Headquarters: 2 pl. Maurice Quentin 75039 Paris cedex 01 / Tel: +33 (0)1 44 76 75 00 / Fax: +33 (0)1 44 46 76 76

Paris Trade & Companies Registry No. B 775 665 912 / Business Registration No: 775 665 912 00082 / Business Sector Code 731Z

