SCM calibration status, feedback from the calibration campaign

SCM Teams

Overview

- Calibration status
 - SCM stand alone calibration is ok
 - Calibration campaign results on Gain
 - Calibration campaign results on Phase

- Software responsibilities discussion:
 - pro, cons, and conditions

SCM stand alone calibration

- Stand alone calibration is ok.
- → Investigation on the « eye » calibration is on-going at LPC2E, but this is clearly a difficult task.

SCM FM Stand alone calibration

conform to specifications.

SCM FM sensitivity

- As expected except at 2kHz :
 - Mono band : $10 fT/Hz^{-1/2}$ instead of $8 fT/Hz^{-1/2}$ expected
 - Double band : $20 fT/Hz^{-1/2}$ instead of $16 fT/Hz^{-1/2}$ expected
- Acceptable

Calibration campaigns

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » changes between EM and FM..
- → Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

Calibration campaigns

Minor variations with temperature (a few %)

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » changes between EM and FM..
- → Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » changes between EM and FM..
- → Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » change between EM and FM..
- Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

→ few % temperature change for FM..

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » change between EM and FM..
- → Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

Sweep injected on each antenna separately

Made with caps deduced from FM.

- \rightarrow « Eye » figure on EM.
- → Minor variations with temperature (a few %) seen on EM.
- → « Eye » change between EM and FM..
- → Minor variations with temperature (a few %) seen on FM. TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?

TDS Bx_mf / LFR Bx_lf comparison issue

Discrepancy with Bx_If and Bx_mf for LFR sweep to explain.

TDS B_xmf / LFR Bxlf comparison issue

- \rightarrow « Eye » figure on EM.
- \rightarrow Minor variations with temperature (a few %) seen on EM.
- \rightarrow « Eye » change between EM and FM..
- → Minor variations with temperature (a few %) seen on FM.
 TBC
- → Eye is largely reduced when the signal is injected on each antenna separately.
- → Discrepancy with Bx_If and Bx_mf for LFR sweep to explain. Not affected the same way by the other antennas/caps ?
- → B_MF response has lower gain as measured with TDS_RSWF.
- → TDS LFM sweep not exploitable.

- → TDS LFM sweep not exploitable, probably because injected frequencies are multiple of 50Hz.
- → Eye probably present but too much noise to be quantify.
- → To be corrected in April but will not be available in temperature.

- Unexpected phase shift when comparison between stimuli and observed waveform is made.
- → Probable explanation: time drift of 20ppm between signal generator clock and RPW clock.

EM - LFR Sweep - Ambiant temp

→Important phase shift at all frequency

→Confirm by independent computation

- → Phase shift can be converted in time delay
- → Trend is independent of frequency
- → Looks like a time shift between clocks

- Needed error to explain the drift:
- In LFR:
 - @F2: Delta_Feq= 0.005Hz
 - @F1: Delta_Feq=0.082Hz
 - @F0: Delta_Feq=0.49Hz

- on EGSE sampling freq: 2.18 Hz
- **Elsewhere**: Delta_T= 20 micro_s/s

Conclusion on campaign calibration (as of today)

- Gain does not appear to depend significantly on temperature - but this is to be confirmed !
- The eye figure does not allow to use the campaign calibration results to calibrate SCM data in gain for now.
 - → Keep the possibility L1-> L2R -> L2S in calibration software (needed in anycase)
 - \rightarrow Investigate if this can be corrected.
- The time drifts between clocks does not allow to use the campaign calibration results to calibrate SCM data in phase for now.

More work is needed to conclude on this

Software responsibilities for waveform data.

- Previously agreed (with involved RH)
 - Analysers: L1 -> L2R, SCM: L2R-> L2S
- Changes in responsibilities imply changes in Human ressources and must be approved by the labs and the CNES.
- We discussed internally (LPC2E) the possibility to perform the calibration of waveform data products from L1 directly.

Software responsibilities for waveform data.

- Calibration sub-system per sub-system (L1 -> L2R -> L2S) is compulsory :
 - campaign results (Transfer function) must be validated by sub-system calibration, at least at ambiant temperature.
 - On-flight calibration investigation requires such a scheme.
- A software L1-> L2S must be able to apply sub-system transfer function individually as well as global transfer function.
- \rightarrow Depending on parameters, this can be very complex.

- A software L1-> L2S must be able to apply sub-system transfer function individually as well as global transfer function.
- 1. Required from analysers teams:
 - The transfer functions (including time delays) for all relevant analyser configuration (with dependency on analysers parameters such like acquisition frequency, multiplexers,...)
 - The relevant documentation.
 - To be delivered to LPC2E and CNES at a date to be fixed.
- 2. Required from the consortium.
 - A list of parameters determining the global transfer function to use and the relevant transfer function, for each parameters combination.
 - Example: Temp(SCM), LFR(@F2), B1(FM) → global-TF gains and phases
- 3. Transfer function are gains and **phases** responses.

Anticipated Relevant parameters for global transfer function

- 1. SCM Antenna
- 2. LFR
 - Antenna.
 - acquisition frequency.
- 3. TDS: unkwnown (antenna, multiplexers, modes, ... ?)
- 4. Temperatures (MEB, Harness, SCM)
 - Might not be relevant for calibration in Gain. Unknown for calibration in phase.
 - It appears unprovable that we will have usable global transfer functions for all temperatures and configuration.
 - If the calibration procedure depends on temperatures, these temperatures must be present in the RPW magnetic waveform L1 product.
- Example: 3 SCM antenna, 4 LFR acquisition frequencies, 4 temperatures -> 48 global transfer functions !

Software responsibilities for waveform data.

- LPC2E might (TBC internally after the meeting) agree to perform L1-> L2S calibration if
 - → The sub-system and global transfer function for each combination of relevant parameters are delivered with documentation by the consortium to LPC2E and CNES.
 - → We need increased human ressources for this (optional 3rd year of IR needs to be accepted).
 - → Coordination (ROC or CNES) is needed.

Thank you