
EDKP ROC2017/11/28

ROC project
development plan

X.Bonnin

1

EDKP ROC2017/11/28

Outlines

1. ROC	project	management	plan	

2. ROC	so5ware	development	plan	

3. ROC	so5ware	valida;on	plan	(cf.	S.Lion)	

4. ROC	opera;ons	management	plan

2

EDKP ROC2017/11/28

Outlines

1. ROC	project	management	plan	

2. ROC	so5ware	development	plan	

3. ROC	so5ware	valida;on	plan	(cf.	S.Lion)	

4. ROC	opera;ons	management	plan

3

EDKP ROC2017/11/28

Software development life-cycle

4

• Iterations between specification/design/development due to
change/unknown in the specification requirements at mission level
(e.g., SBM interface, DDS client-side performance, etc.)

• Planning of "internal" validation campaign to ensure that the
critical functionalities are ready for the in-flight operations.

	

ROC	Software	Development	
Plan	

Ref:	ROC-GEN-SYS-PLN-00015-LES		
Issue:	02	
Revision:	03	
Date:	17/11/2017	
																																													-	34	/	56	-	

ROC-GEN-SYS-PLN-00015-LES_Issue02_Rev03(Software_Development_Plan).docx

Figure 4. ROC software development life cycle.

The requirements and specification steps mainly consist of writing the CIRD and the RSSS,
according to the requirements and specification at higher level.
The design step is dedicated to define the RSS design and to list the associated unit tests to be
implemented.
The development step will have to be driven with two weeks-spaced “sprint” meetings (see
section 4.4.1).
There is no specific testing phase, since the code source is written and continuously integrated
- with non-regression verification capabilities offered by the Jenkins tool - during the
development step.

The validation and commissioning steps are dedicated to validate the RSS expected
functionalities, respectively prior to the launch and after the in-flight instrument-
commissioning phase.
The table below gives the list of expected events – reviews, key points, and validation
campaigns - for each step of the software development cycle. The list of documents to be
delivered before/after each review/key point is given in the SPAP.

Software	development	step	 Expected	review/key	points/events	

Requirements N/A
Specification N/A
Design Preliminary design key point
Development End of design key point (to take account of changes in the

specification and planning)
Validation ROC software validation campaign kick-off meeting at the

beginning of the step / ROC software validation campaign
review board at the end.

Commissioning ROC commissioning review board
Table 9. Expected technical documents during ROC software development life-cycle.

The RSS life-cycle schema is closed to a typical waterfall life cycle. However, since higher-
level specification is susceptible to change during the development (mainly due to the
SOC/MOC interfaces design and data exchange formats), it shall be flexible enough to
introduce possible iterations between specification, design and development steps (white
curved arrows on the figure).
The possible software modifications to be introduced in software shall be discussed in the
“sprint” meetings every two weeks.

Requirements Specification Design Development Validation Commissioning

Prelim
inary D

esig
n Key P

oint

Test R
eadiness

Revie
w

Test R
evie

w Board

End of D
esig

n Key P
oint

Commissi
oning Revie

w Board

EDKP ROC2017/11/28

RSS releases schedule

5

• Since now, 3 main releases of the ROC Software System (RSS) are
planned along the development:

• Release RSS3: Version "E2E" for SOV2 - 4 months (15/12/17?)

• Release RSS4: Version "Ready for flight" for L - 6 months
(28/09/18) — internal validation campaign

• Release RSS5: "Fully operational" for L + 3 mois (28/06/18)

• (RSS main software - RODP[RCS], MUSIC, ROC-SGSE, LLVM)

EDKP ROC2017/11/28

RSS releases specification

6

• Each release shall support the minimal critical functionalities to
achieve the objectives of the related milestones (summarized into
the [ROC-GEN-MGT-PLN-00015-LES])

• RSS functional specification requirements are listed in the ‘ROC
Software System Specification" (RSSS) [ROC-GEN-SYS-
SPC-00026-LES] — labelled with unique ID

• Requirements are automatically reported and tracked into the
ROC Gitlab issue tracker tool. Labelled as "spec" issues with
priority level ("low", "medium", "high" et "critical") w.r.t the
criticality of the requirements for a given release.

EDKP ROC2017/11/28

ROC development strategy

7

• Development timeline planning is split into 2 weeks
"sprints" (tailored adaptation of the "Agile Scrum" method), with a
sprint review meeting at the end (Friday at 10am)

• Review of the tasks achievement for the ended sprint

• Discussions about possible encountered difficulties

• Define new tasks for the next sprint (or tasks to be continued)

• Change/refine the development priorities depending of the
constraints (project planning and personnel availability)

EDKP ROC2017/11/28

ROC sprint management

8

• Sprint tasks are managed with the ROC Gitlab issue tracker tool
using Scrum board

• Tasks are labelled by priority ("low", "medium", "high" et "critical"),
which can be changed from a sprint to another

• Or by type of tasks , "feature", "bug", etc.

• Rules and convention defined in "ROC Engineering
Guidelines" [ROC-GEN-SYS-NTT-00008-LES]

• Tasks will be also reported as issues on JIRA (and visible from
ROC issue dashboard on Confluence)

https://confluence-lesia.obspm.fr/download/attachments/3113240/ROC-GEN-SYS-NTT-00008-LES_Issue01_Rev03(Engineering_Guidelines).Draft.pdf?version=2&modificationDate=1511118160333&api=v2

EDKP ROC2017/11/28

RPW Calibration Software (RCS)
development activity

9

• The RCS dev. activity is managed in parallel, but in
consistency with, the RSS dev. planning

• Documentation (responsibilities, data products, interface,
guidelines)

• Monthly RCS meeting

• Issues managed by the ROC-DATAPROD JIRA project

• Dedicated dashboard on Confluence to follow issues and
action-items

EDKP ROC2017/11/28

Development environment

10

• Source codes managed with Gitlab. One Git repository per
software with branching model management (see S.Lion
slides)

• Continuous integration relying on Jenkins and Gitlab (see
S.Lion slides)

• Dedicated development server at LESIA (also available for
RCS teams)

• Dedicated database and space

• Separated software environment (virtual environment
mechanism for software under Python)

EDKP ROC2017/11/28

Testing/pre-prod/prod. environment

11

• Environment as much as possible similar

• Same server for pre-prod/prod. software

• But distinct environments (virtual environment)

• Testing/pre-prod/prod environment describing in S.Lion
presentation

EDKP ROC2017/11/28

Testing/pre-prod/prod. environment

12

• Software installed on Virtual Machines (VM), hosted and
administrated by the LESIA computer department

• Backup machines planned (laptop)

• Dedicated version of the ROC software will be deployed on
Laptops (with backups) for operations at MOC (ESOC,
Darmstadt, Germany) during commissioning

• MOC instance will be also tested and validated

EDKP ROC2017/11/28

To	be	con;nued…

13

EDKP ROC2017/11/28

Extra	slides

14

RSP ROC20/11/2017

Production des données science:
principe

15

• NASA Common Data Format
(CDF)

• Production of CDF data files using
templates (called "master binary
CDF"). One master file per dataset

• Master binary CDF are generated
from text file called skeleton table

• ROC (L1, HK) and lead-coI (L1R,
L2) teams can generate templates
in Excel format

• Excel format files are converted
into master CDF

• CDF templates are stored in Git
repository

Science
skeleton

table
Excel

Skeleton
tables
ASCII

Master
CDF
CDF

CDF Files
CDF

Use
metadata

from

Pipeline
attribute

table
JSON

Generated from

Use to
generate

Teams

Built from

RPW IDB

HK
skeleton

table
Excel

Provided by

Generated from

HK
skeleton
template
Excel

Use
template

from

