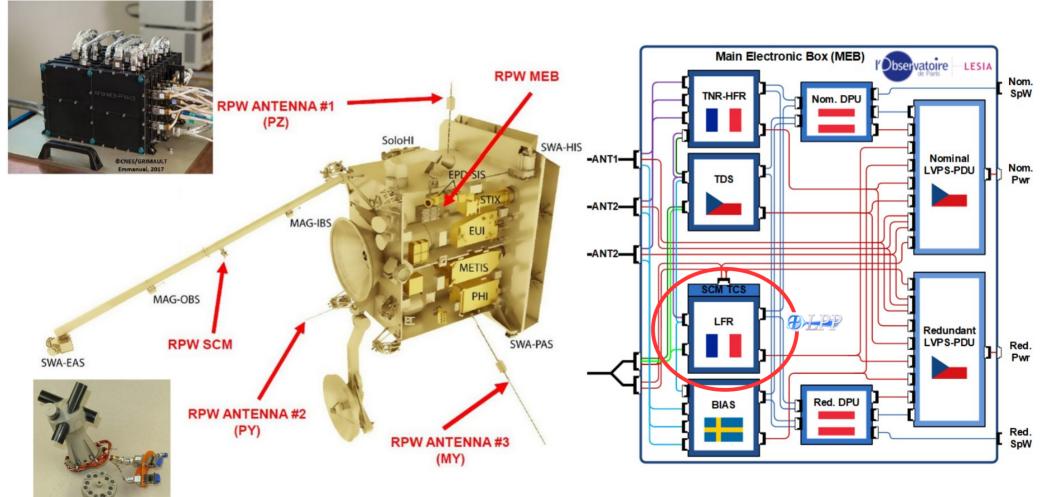


Low Frequency Receiver - LFR

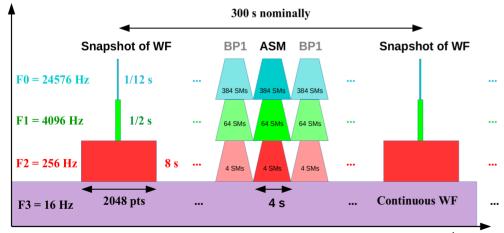
In-flight performance and observations of whistler mode waves


Thomas Chust, the LFR team and the RPW instrument consortium

The instrument

RPW Instrument Overview

LFR nominal inputs : **3 B** + **2 E** + **1 V** (≤ **10** kHz),


The LFR signal processing, based on a FPGA, provides routinely,

- waveforms (SWF & CWF)
- spectral matrices (ASM & BP2)
- basic wave parameters (BP1)

at different time and frequency resolutions:

LFR Normal Mode data flow

sampling frequency

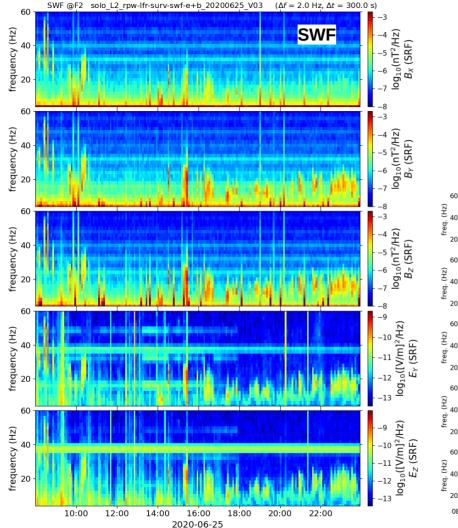
LFR data are calibrated at LESIA by the **ROC production pipeline**, using the calibration softwares of the teams (SCM, BIAS & LFR):

- SCMCAL (LPCE2, Orléans, France)
- BICAS (IRF, Uppsala, Sweden)
- LFR-CALBUT (LPP, Palaiseau, France)

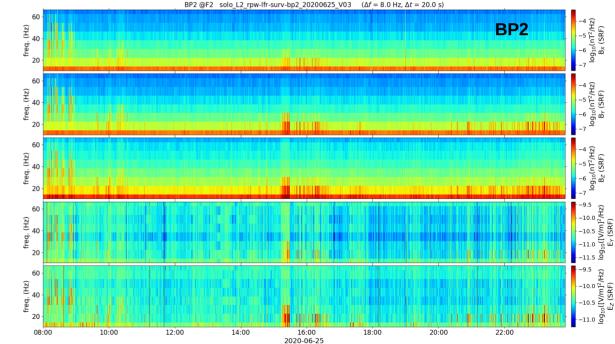
Despite the fact that calibrations of the E and B data still require some improvement (phase shift issue, effective antenna lengths), the first results obtained so far show a **good overall consistency of the RPW LFR data** (A&A 2021 special issue papers, about 12 papers)

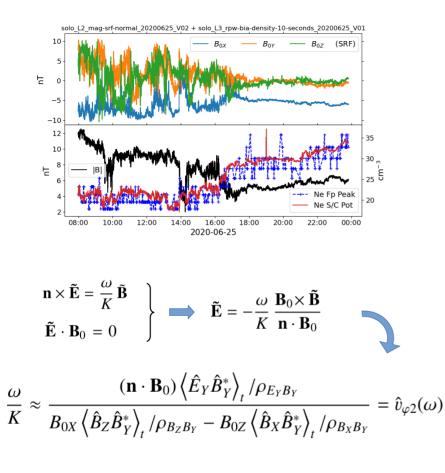
LFR FM board

Astronomy & Astrophysics manuscript no. aa40932-21 November 7, 2021


Solar Orbiter First Results (Cruise Phase)

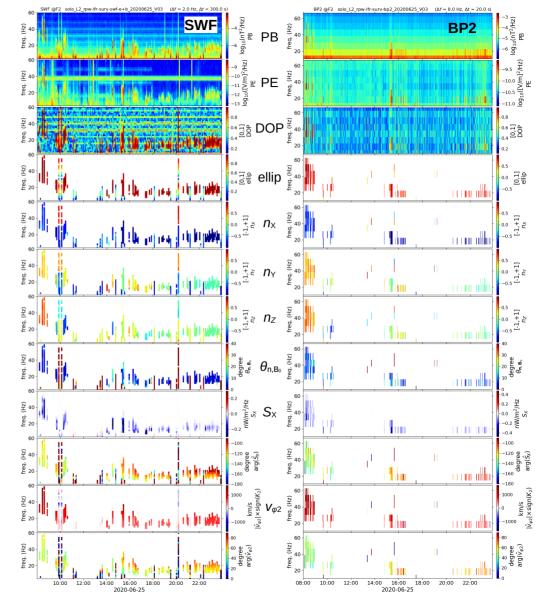
Special issue

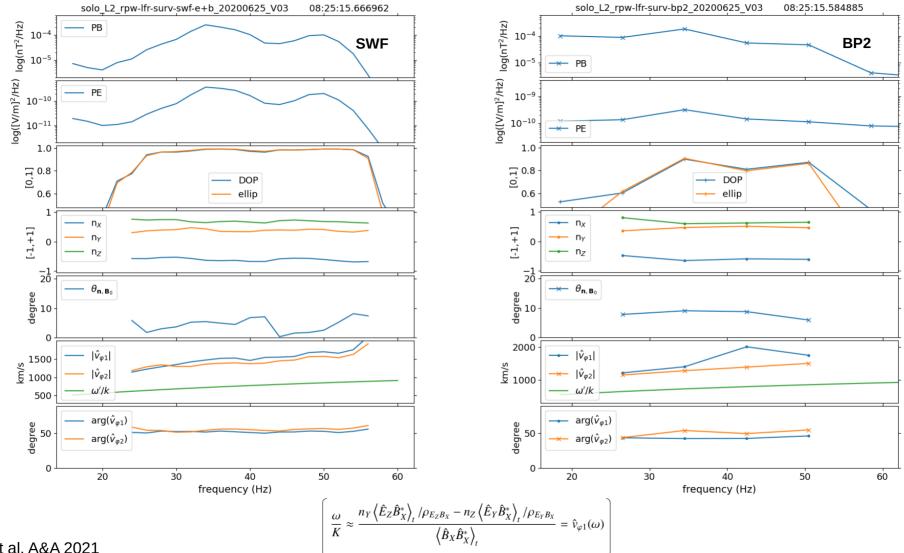

© T. Chust et al. 2021


Observations of whistler mode waves by Solar Orbiter's RPW Low Frequency Receiver (LFR): In-flight performance and first results

T. Chust¹, M. Kretzschmar², D. B. Graham³, O. Le Contel¹, A. Retinò¹, A. Alexandrova¹, M. Berthomier¹, L. Z. Hadid¹, F. Sahraoui¹, A. Jeandet¹, P. Leroy¹, J.-C. Pellion¹, V. Bouzid¹, B. Katra¹, R. Piberne¹,
Yu. V. Khotyaintsev³, A. Vaivads^{3,4}, V. Krasnoselskikh², J. Souček⁵, O. Santolík^{5,6}, E. Lorfèvre⁷, D. Plettemeier⁸,
M. Steller⁹, Š. Štverák¹⁰, P. Trávníček^{13,10}, A. Vecchio^{11,12}, M. Maksimovic¹¹, S. D. Bale^{13,14,15}, T. S. Horbury¹⁶, H. O'Brien¹⁶, V. Evans¹⁶, and V. Angelini¹⁶

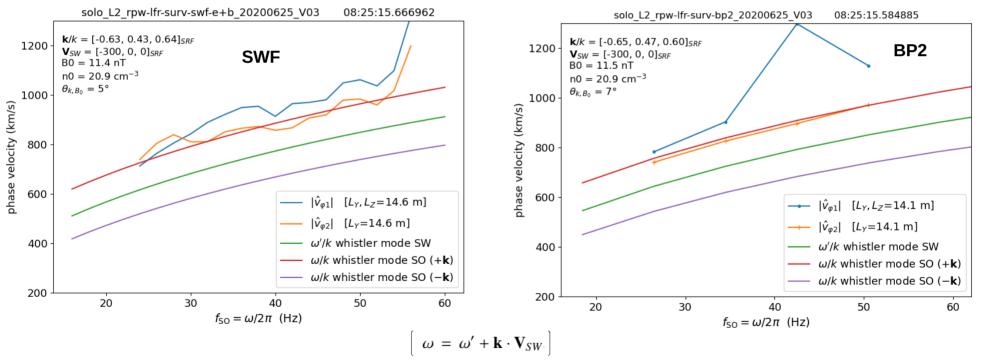
PSD computed from the snapshots of WF (every 300 s, $\Delta f = 2$ Hz) compared with the PSD computed onboard (every 20 s, $\Delta f = 8$ Hz, BP2 data set)

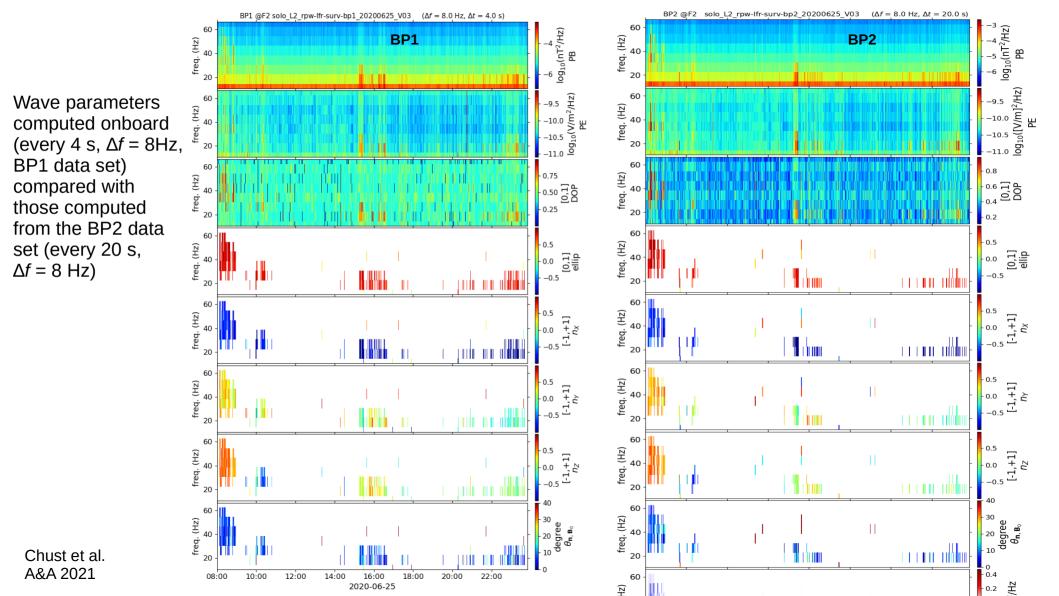


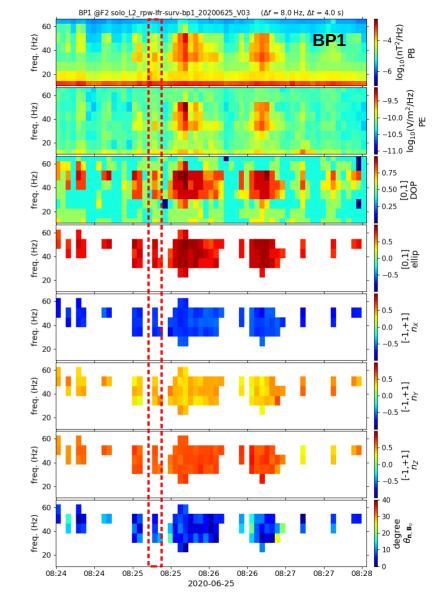


with n, the wave normal vector (Means, JGR, 1972),

and :
$$\mathbf{k} = \mathbf{n} \times K$$


$$\left[\rho_{ij} = \frac{\left| \left\langle \hat{P}_i \hat{P}_j^* \right\rangle_t \right|}{\sqrt{\left\langle \hat{P}_i \hat{P}_i^* \right\rangle_t \left\langle \hat{P}_j \hat{P}_j^* \right\rangle_t}} \right]$$





Identification of whistler mode waves in the solar wind

Phase velocity measured (orange) from waveforms (SWF data set) compared with the theoretical (red) Doppler shifted (+**k**) whistler mode Phase velocity measured (orange) from onboard spectral data products (BP2 data set) compared with the theoretical (red) Doppler shifted (+k) whistler mode

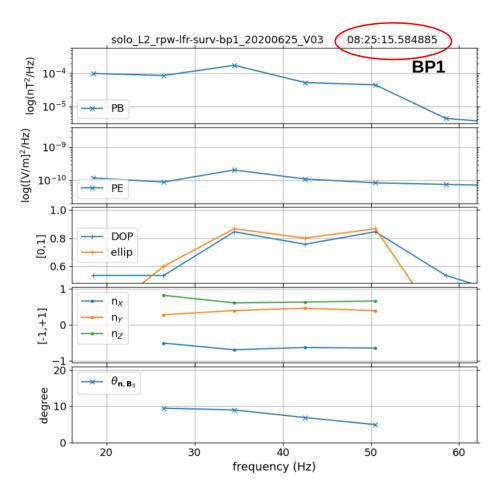
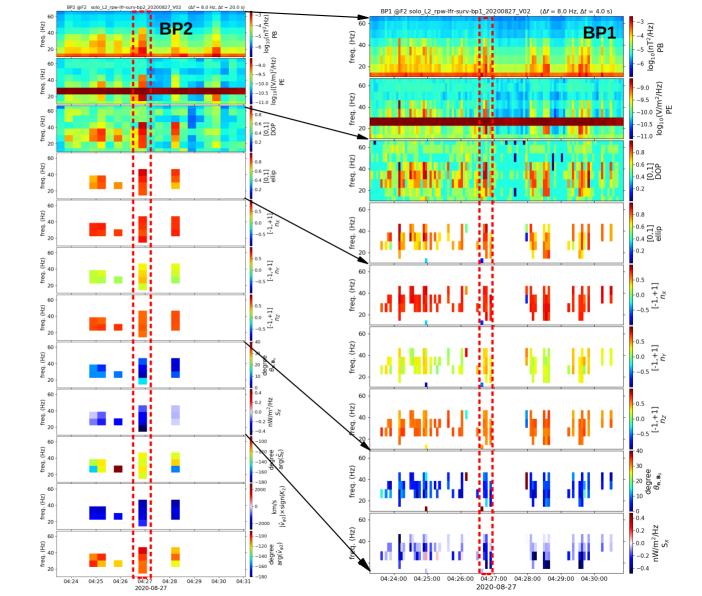
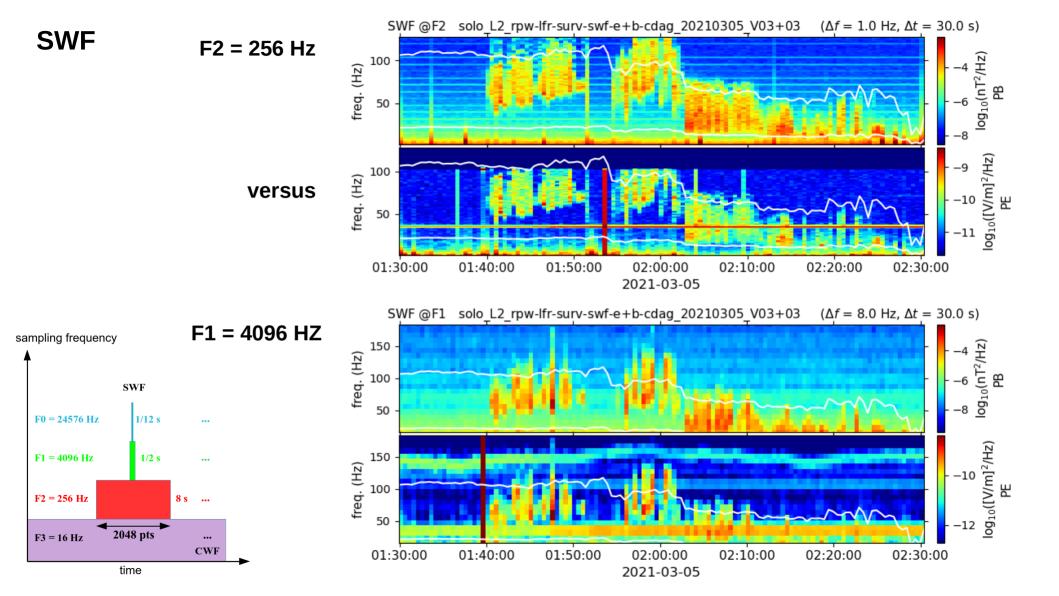
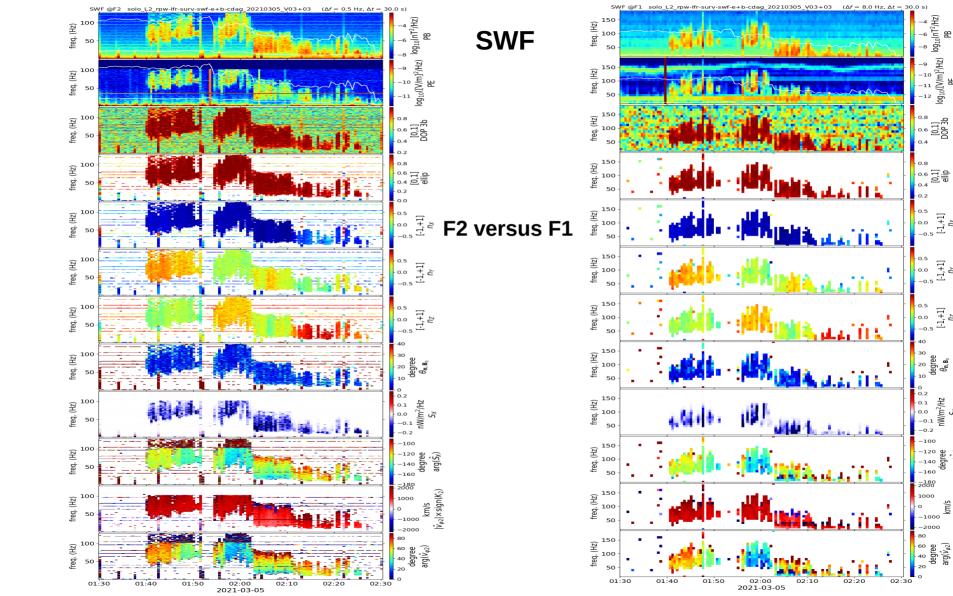



Illustration again of the intermittency of the whistler mode waves and the correct calculation of BP1 data, but this time including the **Poynting flux S**_x, showing that the <u>update of</u> <u>the kcoefficients</u> worked very well


04:26:44 UTC (August 27, 2020)



Further verification of the consistency of the LFR data

log₁₀([V/m]²/Hz)

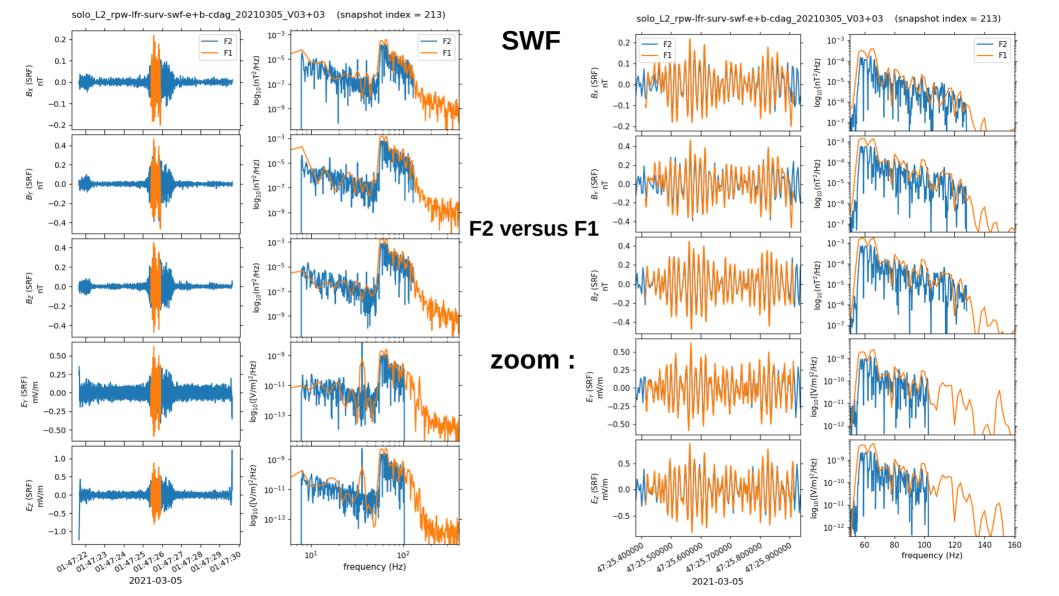
문

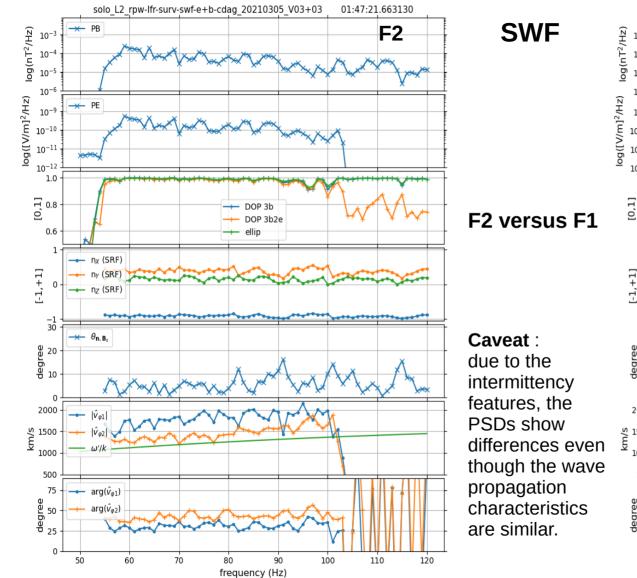
 $[-1,+1]_{\chi}$

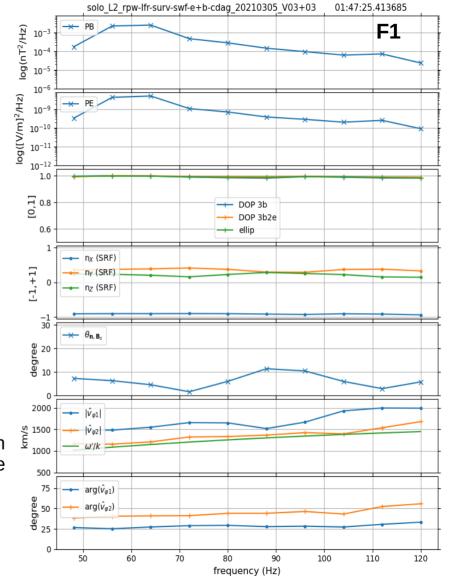
 $\begin{bmatrix} -1,+1 \end{bmatrix}$

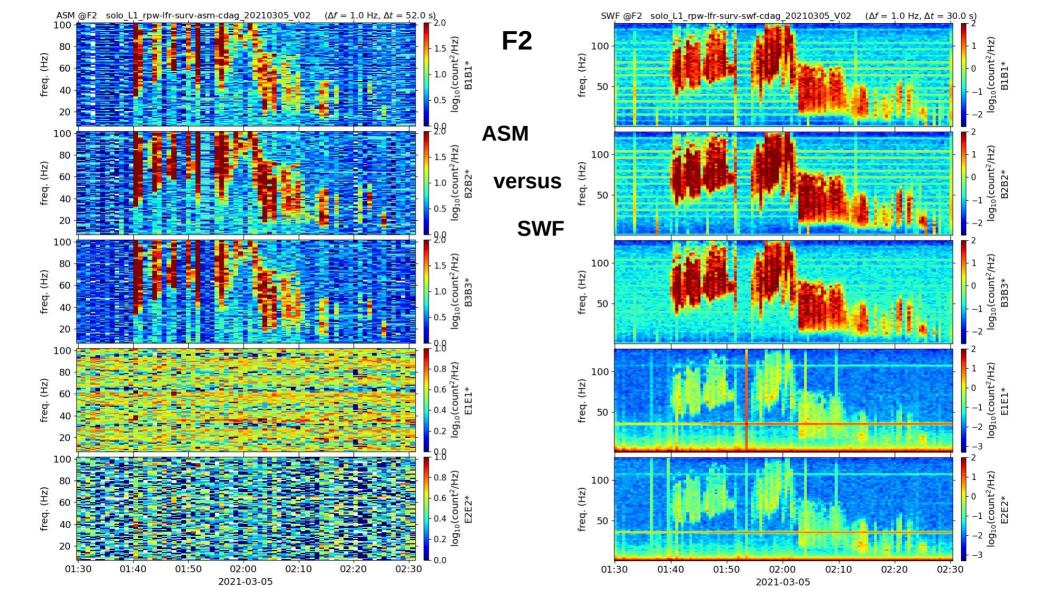
[-1,+1] n_Z

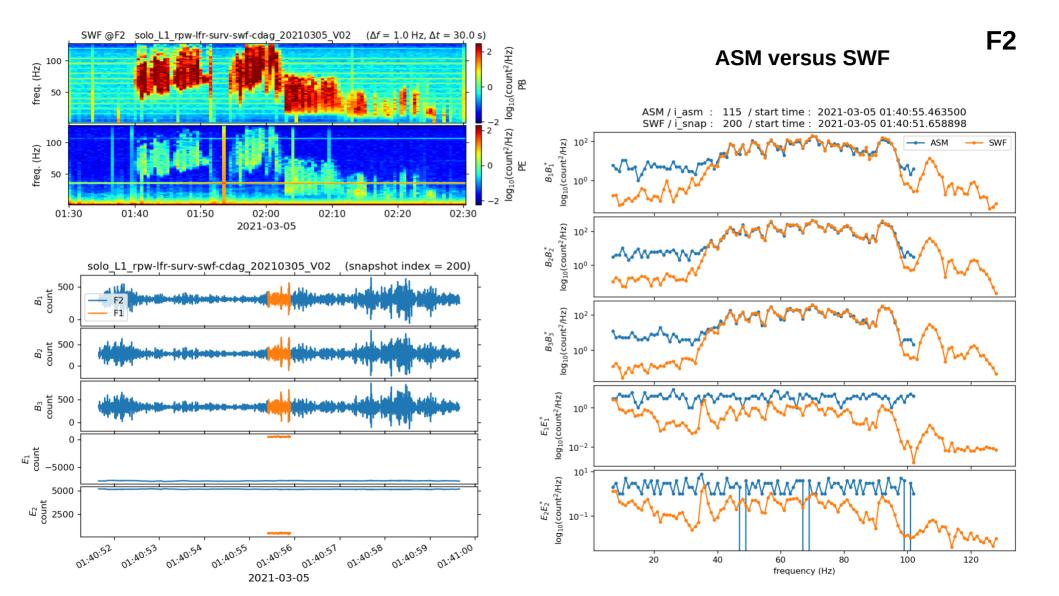
д В

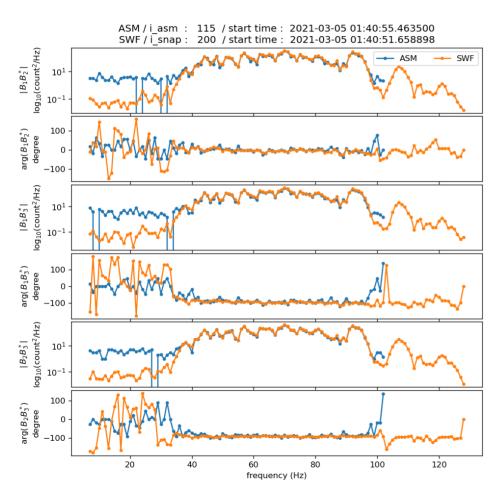

nW/m²/Hz S_X

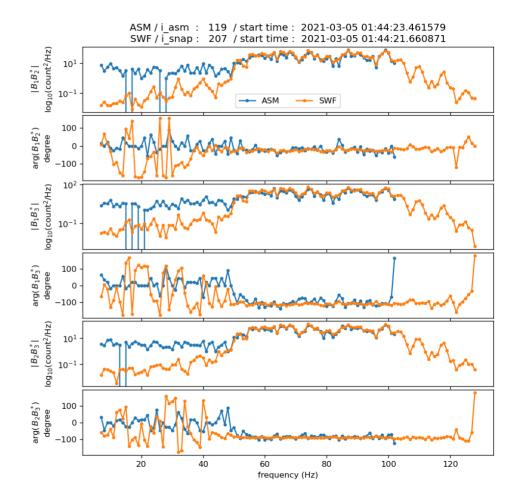

degree arg(Ŝ_X)


 $|\hat{v}_{\phi2}| \times sign(K_2)$


km/s


 $\arg(\hat{v}_{\varphi 2})$

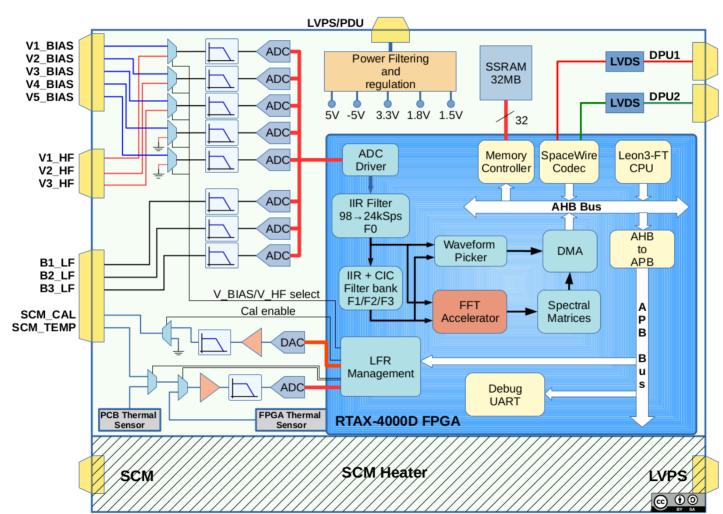




ASM versus SWF

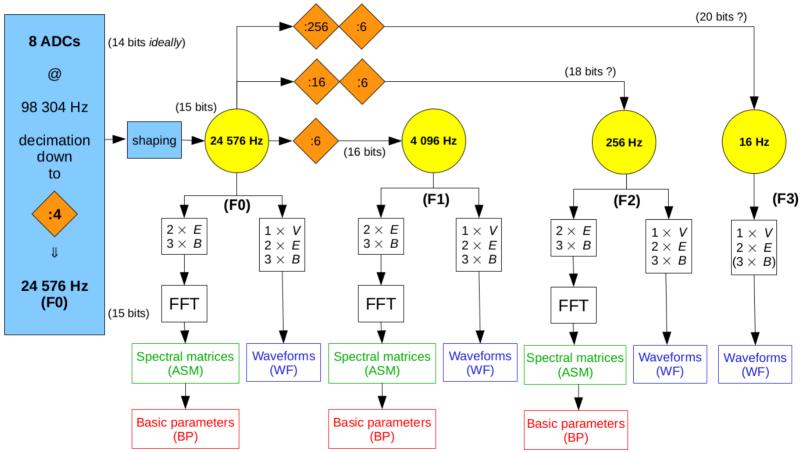
Conclusion

- Where possible, comparisons between all LFR data products show a very good consistency
- So far, **phase shift issue (between E and B) can be neglected** when determining the sign of *S*_X or the direction of the wave propagation (Kretzschmar et al. 2021; Chust et al. 2021).
- Fluctuations in the determination of the effective antenna lengths are still not well understood (Steinvall et al. 2021; Kretzschmar et al. 2021; Chust et al. 2021).

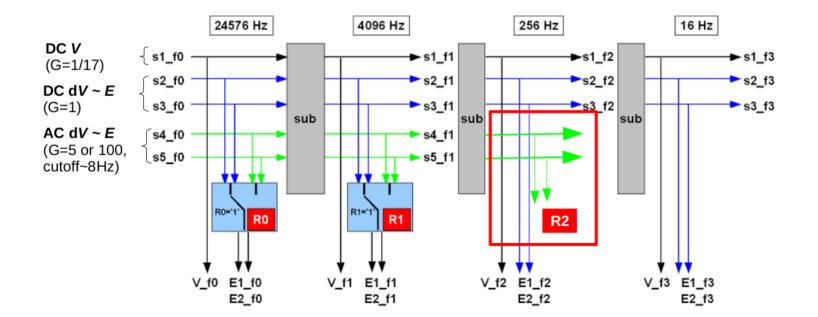


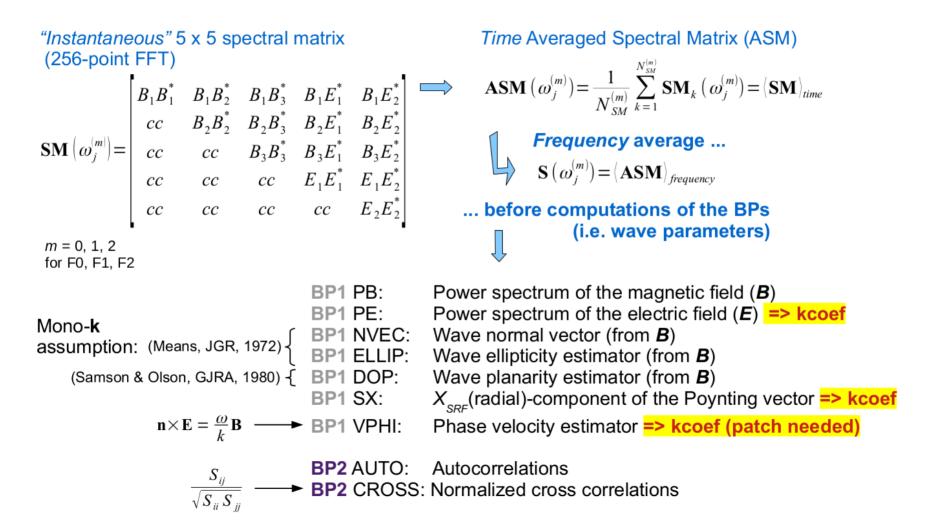
Additional slides

LFR block diagram

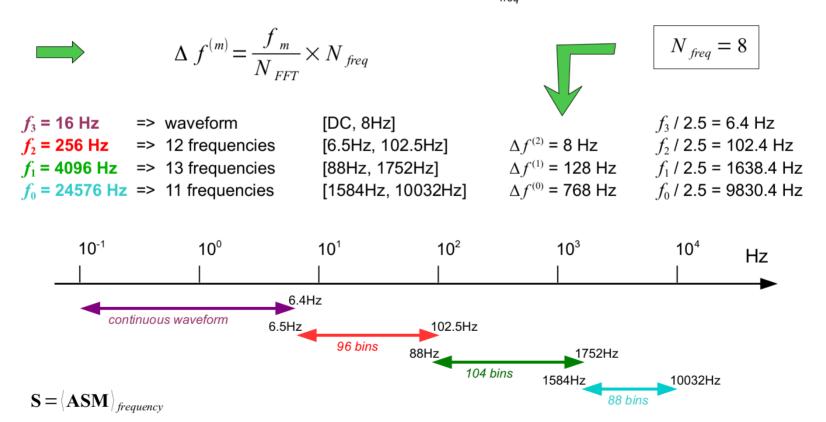


LFR Decimation and Processing Strategy




BIAS 5 outputs and the LFR R-parameters

LFR current set of Basic Parameters



LFR spectral frequencies

(1) Depending on the frequency channel, **selection** of 96, 104 or 88 consecutive **frequency bins** among 128 (N_{FFT} = 256) of the *time* averaged spectral matrices.

(2) Then, the ASMs are averaged over packets of N_{freq} (8 or 4) consecutive bins :

Has been done at the beginning of STP103 (06/07-12/07)

PE : transformation into SRF (2 ortho comp.) SX : same for B + E-B relative calibration

AC DIFF G5

R = 0

2020-06-18

2020-00-18																
requency	kcoeff_1	kcoeff_2	kcoeff_3	kcoeff_4	kcoeff_5	kcoeff_6	kcoeff_7	kcoeff_8	kcoeff_9	kcoeff_10	kcoeff_11		kcoeff_13	kcoeff_14	kcoeff_15	kcoeff_16
(Hz)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)	(float)
1968.00	1.000000	1.250000	1.000000	-0.000000	0.680709	0.084467	-0.075378	0.002689	-0.006633	-0.004708	-0.828601	-0.100358	-0.615400	-0.121279	-0.684965	-0.072993
2736.00	1.000000	1.250000	1.000000	-0.000000	0.683845	0.046790	-0.077284	0.006480	-0.005590	-0.004755	-0.831959	-0.057230	-0.610072	-0.080905	-0.688697	-0.009801
3504.00	1.000000	1.250000	1.000000	-0.000000	0.684479	0.023171	-0.079053	0.009339	-0.004768	-0.004780	-0.831838	-0.030256	-0.601822	-0.055823	-0.691407	0.035243
4272.00	1.000000	1.250000	1.000000	-0.000000	0.684285	-0.000440	-0.080385	0.012018	-0.003927	-0.004456	-0.830962	-0.002683	-0.592844	-0.031602	-0.694529	0.078141
5040.00	1.000000	1.250000	1.000000	-0.000000	0.683102	-0.032862	-0.080902	0.015643	-0.003207	-0.004357	-0.828408	0.035232	-0.582548	0.000017	-0.694929	0.128425
5808.00	1.000000	1.250000	1.000000	-0.000000	0.679045	-0.077452	-0.080685	0.020638	-0.002670	-0.004105	-0.823017	0.088014	-0.569249	0.042608	-0.689826	0.190891
6576.00	1.000000	1.250000	1.000000	-0.000000	0.670473	-0.129371	-0.079861	0.026565	-0.002390	-0.003748	-0.812267	0.150402	-0.551233	0.090651	-0.677161	0.259483
7344.00	1.000000	1.250000	1.000000	-0.000000	0.660435	-0.171886	-0.078807	0.031303	-0.002101	-0.003724	-0.799841	0.200498	-0.530949	0.130834	-0.663375	0.317959
8112.00	1.000000	1.250000	1.000000	-0.000000	0.660779	-0.168973	-0.079255	0.030848	-0.001279	-0.003575	-0.798949	0.196290	-0.517772	0.135450	-0.669077	0.330162
8880.00	1.000000	1.250000	1.000000	-0.000000	0.677499	-0.077787	-0.082895	0.018871	-0.000068	-0.003632	-0.816823	0.084936	-0.519847	0.073541	-0.715673	0.249207
9648.00	1.000000	1.250000	1.000000	-0.000000	0.681470	0.022690	-0.084661	0.006578	0.000491	-0.003514	-0.819349	-0.036598	-0.515658	0.008594	-0.754707	0.152344
152.00	1.000000	1.250000	1.000000	-0.000000	0.250260	0.644123	-0.026544	-0.050484	-0.003991	-0.011837	-0.308949	-0.769155	-0.238878	-0.832557	-0.266696	-0.894962
280.00	1.000000	1.250000	1.000000	-0.000000	0.435058	0.536410	-0.045370	-0.038012	-0.004918	-0.008762	-0.530177	-0.636836	-0.422869	-0.688790	-0.463289	-0.733262
408.00	1.000000	1.250000	1.000000	-0.000000	0.533893	0.436249	-0.055709	-0.029291	-0.005497	-0.007015	-0.648099	-0.517161	-0.513439	-0.555338	-0.562708	-0.585619
536.00	1.000000	1.250000	1.000000	-0.000000	0.587681	0.359136	-0.061837	-0.022570	-0.006285	-0.006126	-0.713384	-0.424653	-0.558237	-0.453699	-0.611799	-0.472014
664.00	1.000000	1.250000	1.000000	-0.000000	0.618808	0.300719	-0.065342	-0.017659	-0.007364	-0.006185	-0.751394	-0.355742	-0.581250	-0.378724	-0.638215	-0.387033
792.00	1.000000	1.250000	1.000000	-0.000000	0.638057	0.256898	-0.067508	-0.013749	-0.007346	-0.005052	-0.774980	-0.303034	-0.594074	-0.323367	-0.652844	-0.323797
920.00	1.000000	1.250000	1.000000	-0.000000	0.650217	0.222509	-0.069381	-0.010659	-0.007270	-0.004845	-0.790133	-0.262800	-0.601775	-0.280832	-0.661824	-0.274364
1048.00	1.000000	1.250000	1.000000	-0.000000	0.659008	0.194906	-0.070656	-0.007736	-0.007396	-0.004562	-0.800838	-0.229373	-0.606966	-0.246803	-0.668286	-0.234006
1176.00	1.000000	1.250000	1.000000	-0.000000	0.665408	0.169230	-0.071854	-0.006071	-0.007568	-0.004507	-0.809481	-0.199492	-0.610956	-0.217468	-0.673320	-0.198444
1304.00	1.000000	1.250000	1.000000	-0.000000	0.670761	0.146243	-0.072662	-0.003866	-0.007289	-0.004516	-0.815947	-0.172497	-0.614190	-0.191600	-0.677752	-0.167006
1432.00	1.000000	1.250000	1.000000	-0.000000	0.674564	0.125896	-0.073488	-0.001698	-0.007126	-0.004639	-0.820815	-0.148492	-0.616342	-0.169058	-0.680765	-0.139056
1560.00	1.000000	1.250000	1.000000	-0.000000	0.677124	0.111511	-0.073890	-0.000368	-0.007175	-0.004652	-0.823828	-0.131910	-0.616715	-0.152930	-0.682387	-0.117971
1688.00	1.000000	1.250000	1.000000	-0.000000	0.677909	0.106444	-0.074376	0.000250	-0.006978	-0.004553	-0.824805	-0.125884	-0.615684	-0.145642	-0.682700	-0.106756
10.50	1.000000	1.250000	1.000000	-0.000000	-0.064163	0.691371	0.005238	-0.049219	0.001012	-0.010796	0.052509	-0.788477	0.071794	-0.856683	0.075569	-0.916724
18.50	1.000000	1.250000	1.000000	-0.000000	-0.138377	0.678801	0.008808	-0.050425	0.004210	-0.011572	0.136663	-0.788797	0.162978	-0.855399	0.174421	-0.916848
26.50	1.000000	1.250000	1.000000	-0.000000	-0.118979	0.682794	0.007025	-0.049553	0.001158	-0.010515	0.115928	-0.798322	0.146259	-0.866676	0.156269	-0.931405
34.50	1.000000	1.250000	1.000000	-0.000000	-0.086301	0.687445	0.004599	-0.050711	0.001742	-0.010776	0.079182	-0.809000	0.110229	-0.880463	0.116501	-0.944506
42.50	1.000000	1.250000	1.000000	-0.000000	-0.051160	0.691451	0.002795	-0.050467	0.002297	-0.008438	0.042965	-0.813893	0.074655	-0.888435	0.078498	-0.951999
50.50	1.000000	1.250000	1,000000	-0.000000	-0.017434	0.690637	-0.003165	-0.057706	0.007160	-0.013982	0.009704	-0.816750	0.037321	-0.898358	0.038160	-0.959488
58.50	1.000000	1.250000	1.000000	-0.000000	0.008883	0.692317	-0.001998	-0.051320	0.002576	-0.010018	-0.026732	-0.817230	0.010392	-0.894188	0.008285	-0.959643
66.50	1.000000	1.250000	1.000000	-0.000000	0.033912	0.691814	-0.006235	-0.051648	0.000089	-0.011058	-0.056269	-0.820826	-0.015915	-0.893520	-0.019992	-0.958181
74.50	1.000000	1.250000	1.000000	-0.000000	0.058759	0.689708	-0.008406	-0.051508	-0.000637	-0.010220	-0.085366	-0.818306	-0.041164	-0.890868	-0.047973	-0.954232
82.50	1.000000	1.250000	1.000000	-0.000000	0.081055	0.688097	-0.011295	-0.049474	-0.000468	-0.010783	-0.111820	-0.815674	-0.063871	-0.888986	-0.072991	-0.953335
90.50	1.000000	1.250000	1.000000	-0.000000	0.103966	0.685133	-0.012776	-0.050548	-0.001181	-0.011071	-0.137918	-0.812970	-0.087822	-0.884208	-0.099221	-0.947926
98.50	1.000000	1.250000	1.000000	-0.000000	0.122452	0.682203	-0.015249	-0.049152	-0.001474	-0.010516	-0.159991	-0.808639	-0.107694	-0.880608	-0.120736	-0.945213

11 F0 + 13 F1 + 12 F2 = 36 frequency bins

Computation of the k-coefficients for PE

Power spectrum of the electric field

$$\left\{ E_{Y'} E_{Y'}^{*} + E_{Z'} E_{Z'}^{*} \right\} = \left\{ {}^{\mathrm{T}} \mathbf{E}_{ANT} \cdot \frac{1}{|A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}|^{2}} \left[\frac{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}{-A_{1Y'} A_{2Y'}^{*} - A_{1Z'} A_{2Z'}^{*}} - \frac{A_{1Y'}^{*} A_{2Y'} - A_{1Z'}^{*} A_{2Z'}^{*}}{|A_{1Y'}|^{2} + |A_{1Z'}|^{2}} \right] \cdot \mathbf{E}_{ANT}^{*} \right\}$$

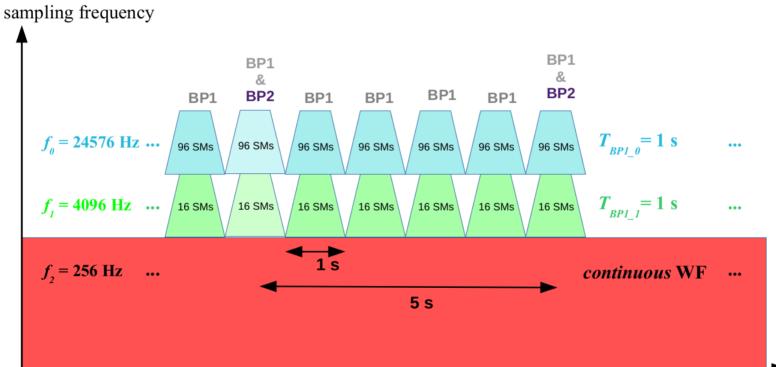
$$= \left(\frac{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}{|A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}|^{2}} \right) S_{44} + \frac{|A_{1Y'}|^{2} + |A_{1Z'}|^{2}}{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}} S_{55} - 2 \Re \left[\frac{A_{1Y'}^{*} A_{2Y'} + A_{1Z'}^{*} A_{2Z'}^{*}}{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}} S_{45} \right] \right)$$
Calibration factor

$$PE = S_{44} k_{44}^{pe} + S_{55} k_{55}^{pe} + \Re \left[S_{45} k_{45}^{pe} \right]$$

with
$$\begin{cases} k_{44}^{pe} = 1 \\ k_{55}^{pe} = \frac{|A_{1Y'}|^2 + |A_{1Z'}|^2}{|A_{2Y'}|^2 + |A_{2Z'}|^2} \\ k_{45}^{pe} = -2 \frac{A_{1Y'}^* A_{2Y'} + A_{1Z'}^* A_{2Z'}}{|A_{2Y'}|^2 + |A_{2Z'}|^2} \end{cases}$$

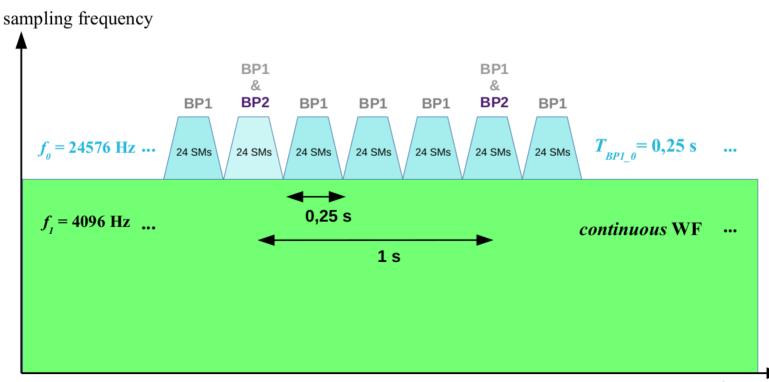
WARNING: The TF of BIAS and LFR are implicitly embodied in the TF matrix of ANT (just a common calibration factor)

 $X_{\rm SRF}$ -component of the Poynting vector


$$\begin{split} \langle S_{X'} \rangle &= \langle (\mathbf{E} \times \mathbf{B}^{\star})_{X'} \rangle = \langle E_{Y'} B_{Z'}^{\star} \rangle - \langle E_{Z'} B_{Y'}^{\star} \rangle \\ &= \langle \frac{A_{2Z'} E_{1} - A_{1Z'} E_{2}}{A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'}} \frac{1}{C_{1Y}^{\star}} \widetilde{m}_{Z'j}^{\star} B_{j}^{\star} \rangle - \langle \frac{-A_{2Y'} E_{1} + A_{1Y'} E_{2}}{A_{1Y'} A_{2Z'} A_{2Y'}} \frac{1}{C_{1Y}^{\star}} \widetilde{m}_{Z'j}^{\star} B_{j}^{\star} \rangle \\ &= \frac{(A_{2Y'} \widetilde{m}_{Y'j}^{\star} + A_{2Z'} \widetilde{m}_{Z'j}^{\star}) \langle E_{1} B_{j}^{\star} \rangle - \langle A_{1Y'} \widetilde{m}_{Y'j}^{\star} + A_{1Z'} \widetilde{m}_{Z'j}^{\star} \rangle \langle E_{2} B_{j}^{\star} \rangle}{\langle A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'} \rangle C_{1Y}^{\star}} \\ \hline \text{Calibration factor} \\ &= \frac{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}}{\langle A_{1Y'} A_{2Z'} - A_{1Z'} A_{2Y'} \rangle C_{1Y}^{\star}} \int \frac{A_{2Y'} \widetilde{m}_{Y'j}^{\star} + A_{2Z'} \widetilde{m}_{Z'j}^{\star}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} S_{4j} - \frac{A_{1Y'} \widetilde{m}_{Y'j}^{\star} + A_{1Z'} \widetilde{m}_{Z'j}^{\star}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} S_{5j} \end{bmatrix} \\ \hline \mathbf{SX'} = S_{41} k_{41}^{sx'} + S_{42} k_{42}^{sx'} + S_{43} k_{43}^{sx'} + S_{51} k_{51}^{sx'} + S_{52} k_{52}^{sx'} + S_{53} k_{53}^{sx'} \\ \text{with} \begin{cases} k_{4j}^{sx'} = + \frac{A_{2Y'} \widetilde{m}_{Y'j}^{\star} + A_{2Z'} \widetilde{m}_{Z'j}^{\star}}{\sqrt{|A_{2Y'}|^{2} + |A_{2Z'}|^{2}}} \times \exp\left[i\left(\varphi_{C_{1Y}} - \varphi_{A_{1Y'}A_{2Z'} - A_{1Z'}A_{2Y'}\right)\right] \end{bmatrix} j = 1, 2, 3 \end{cases} \end{aligned}$$

WARNING: As for ANT, the TF of LFR is implicitly embodied in the TF matrix of SCM (just a common calibration factor)

LFR Selected Burst Mode 2 & BURST mode



LFR Selected Burst Mode 1

Overview of the A&A special issue papers (1)

• Whistler waves

Observations of whistler mode waves by the Solar Orbiter RPW Low Frequency Receiver (LFR): in-flight performance and first results, Chust, T., M. Kretzschmar, D. B. Graham et al., A & A, 2021.

Whistler waves observed by Solar Orbiter / RPW between 0.5 AU and 1 AU, Kretzschmar, M., T. Chust, V. Krasnoselskikh et al., A & A, 2021.

Whistler instability driven by the suprathemal electron deficit in the solar wind, High-cadence Solar Orbiter observations, Berčič, L., D. Verscharen, C. J. Owen, , A & A, 2021.

• DC electric field and S/C potential measurements

Solar wind current sheets and deHoffmann-Teller analysis: First results of DC electric field measurements by Solar Orbiter, Steinvall, K., Yu. V. Khotyaintsev, G. Cozzani et al, A & A, 2021.

Density Fluctuations Associated with Turbulence and Waves, First Observations by Solar Orbiter, Khotyaintsev , Yu. V., D. B. Graham, A. Vaivads, et al, A & A, 2021.

Statistical study of electron density turbulence and ion-cyclotron waves in the inner heliosphere: Solar Orbiter observations, Carbone, F., L. Sorriso-Valvo, Yu. V. Khotyaintsev et al, A & A, 2021.

Study of two interacting Interplanetary Coronal Mass Ejections encountered by Solar Orbiter during its first perihelion passage, Observations and modeling, Telloni D., C. Scolini, C. Möstl et al, A & A, 2021.

Overview of the A&A special issue papers (2)

Venus flyby

Solar Orbiter's first Venus flyby: observations from the Radio and Plasma Wave instrument, Hadid, L. Z., N. J. T. Edberg, T. Chust et al., A & A, 2021.

Analysis of multi-scale structures at the quasi-perpendicular Venus bow shock, Results from Solar Orbiter's first Venus flyby, Dimmock, A. P., Yu. V. Khotyaintsev, A. Lalti et al., A & A, 2021.

Energetic Ions in the Venusian System: Insights from the First Solar Orbiter Flyby, Allen R. C., I. Cernuda, D. Pacheco, et al, A & A, 2021.

• Ion acoustic waves

Kinetic Electrostatic Waves and their Association with Current Structures in the Solar Wind, Graham, D. B., Yu. V. Khotyaintsev, A. Vaivads et al, A & A, 2021.

Cometary observations

Waves and structures from Solar Orbiter's encounter with the tail of comet C/2019 Y4 (ATLAS); signatures from magnetic field draping and cometary pick-up ion instabilities, L. Matteini, R. Laker, T. Horbury et al, A & A, 2021.

• Overview of the RPW instrument suite

First observations and performance of the RPW instrument onboard the Solar Orbiter mission, Maksimovic , M., J. Souček, T. Chust, et al, A & A, 2021.