Reconnection identification

December 2021 | Naïs Fargette, Benoit Lavraud, Alexis Rouillard

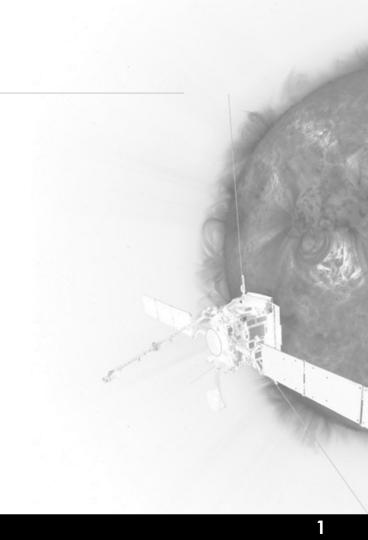
Table of contents

1 In-situ signature

2 Modeling

3 Likelihood

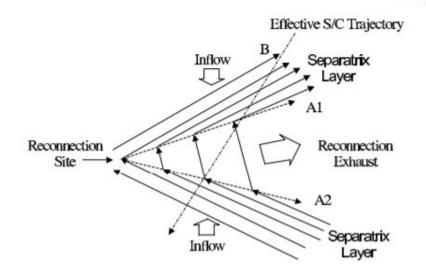
4 Results



Magnetic reconnection signature

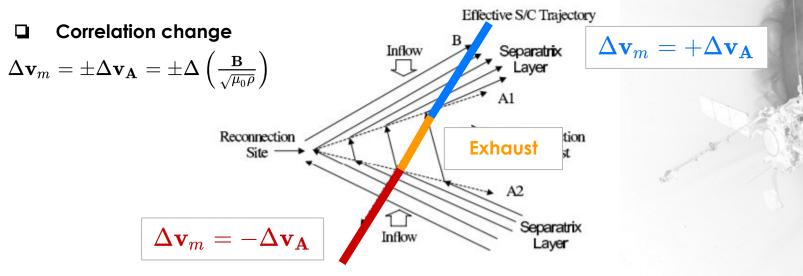
B shear

V jet

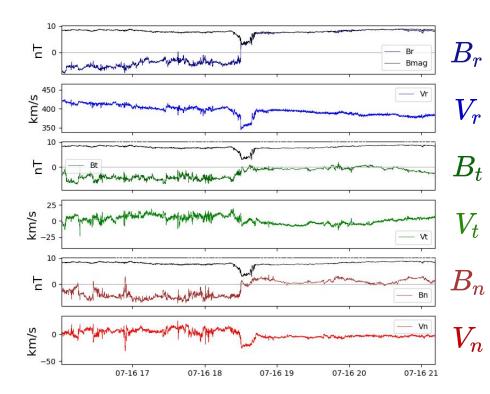


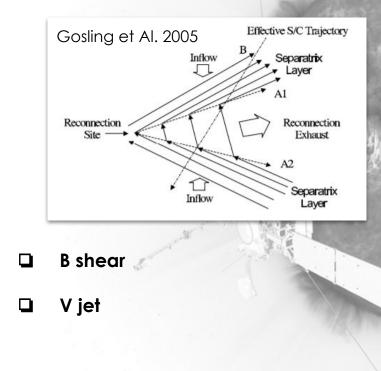
B shear

V jet

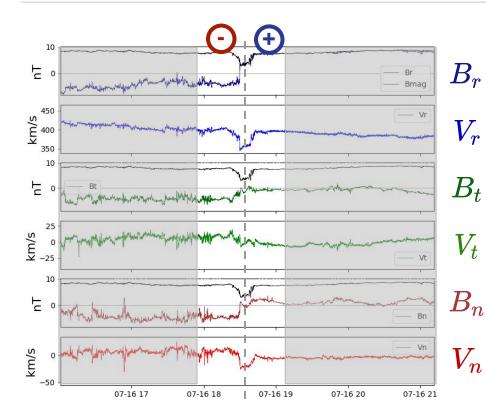


Reconnection jet





Reconnection jet



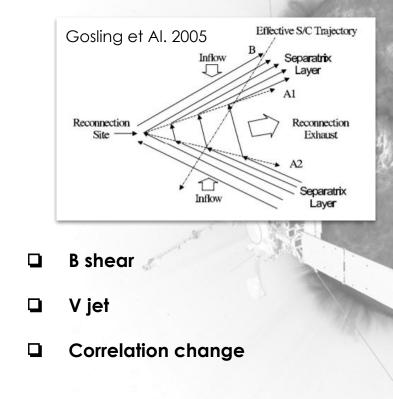


Table of contents

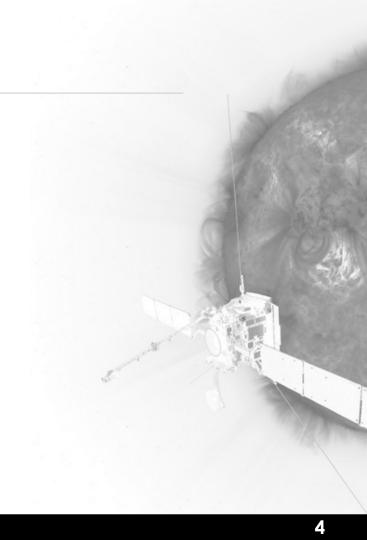
In-situ signature

2 Modeling

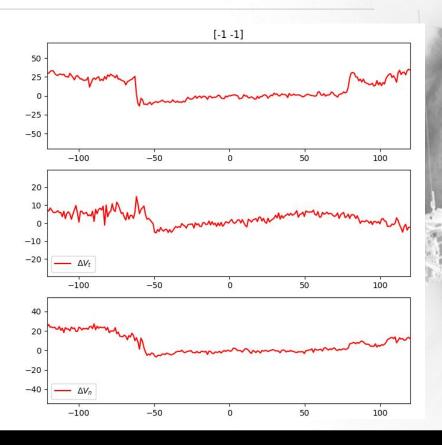
1

3 Wavelet analysis

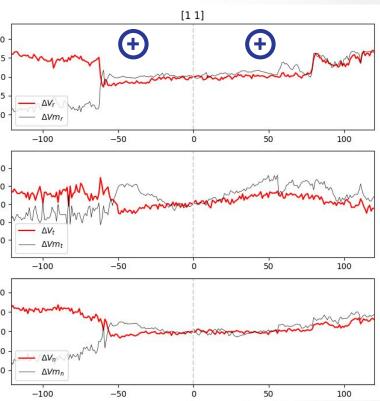
4 Discussion



Data:
$$\Delta \mathbf{v} = \mathbf{v}(t) - \mathbf{v}(t0)$$
 —



 $\Delta \mathbf{v} = \mathbf{v}(t) - \mathbf{v}(t0)$ Data : 50 Ð 25 0 -25 Model: $\Delta \mathbf{v}_m = \pm \Delta \mathbf{v}_\mathbf{A}$ -50 ΔVm -100 -50 20 10 1 - Correlated + / + -10 2 - Anticorrelated - / --20 ∆Vm. -100 -50 40 3 - Jet + / -20 0 4 - Jet - / + -20 ΔVn -40



[-1 -1] $\Delta \mathbf{v} = \mathbf{v}(t) - \mathbf{v}(t0)$ Data : 50 (-)_ 25 0 -25 ΔV_r Model: $\Delta \mathbf{v}_m = \pm \Delta \mathbf{v}_\mathbf{A}$ -50 ΔVm_{i} -100 -50 50 0 20 10 1 - Correlated + / +-10 $\Delta V_{\rm f}$ 2 - Anticorrelated - / --20 ∆Vm. -100 -50 ò 50 40 3 - Jet + / -20 0 4 - Jet - / + -20 ΔV_n -40 ∆Vm_n

-100

-50

100

100

100

50

[1-1] $\Delta \mathbf{v} = \mathbf{v}(t) - \mathbf{v}(t0)$ Data : 50 $(\mathbf{+})$ 25 0 -25 AV. Model: $\Delta \mathbf{v}_m = \pm \Delta \mathbf{v}_\mathbf{A}$ -50 ΔVm -100 -50 0 20 10 1 - Correlated + / +-10 2 - Anticorrelated - / --20 ∆Vm. -100 -50 ò 40 3 - Jet + / -20 0 4 - Jet - / + -20 ΔVn -40 ∆Vm_n

-100

-50

-

50

50

50

0

100

100

[-1 1] $\Delta \mathbf{v} = \mathbf{v}(t) - \mathbf{v}(t0)$ Data : 50 (+)Maxim 25 0 -25 ΔV_r Model: $\Delta \mathbf{v}_m = \pm \Delta \mathbf{v}_\mathbf{A}$ -50 ∆Vm_r -100 -50 50 100 0 20 10 1 - Correlated + / +0 -10 $\Delta V_{\rm f}$ 2 - Anticorrelated - / --20 ∆Vm, -100 -50 ò 50 100 40 3 - Jet + / -20 0 4 - Jet - / + -20 ΔV_n -40 ∆Vm_n

-100

-50

50

0

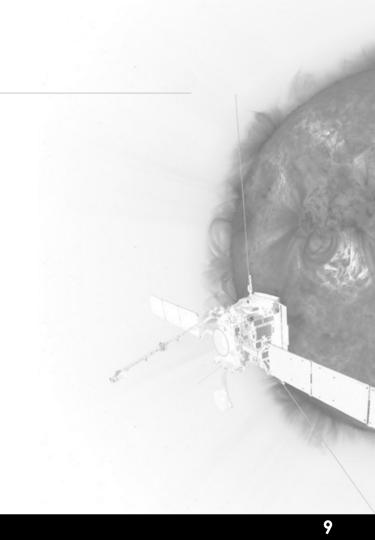
Table of contents

1 In-situ signature

2 The Walen relation

3 Likelihood of the data

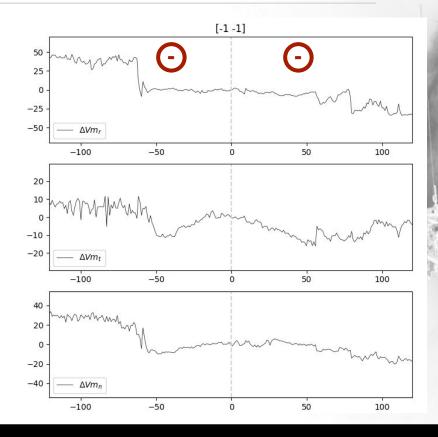
4 Discussion



Anticorrelated model

Model:
$$\Delta \mathbf{v}_m = -\Delta \mathbf{v}_\mathbf{A}$$
 -

Let's assume a normal distribution of the data around the model with dispersion = 10 km/s

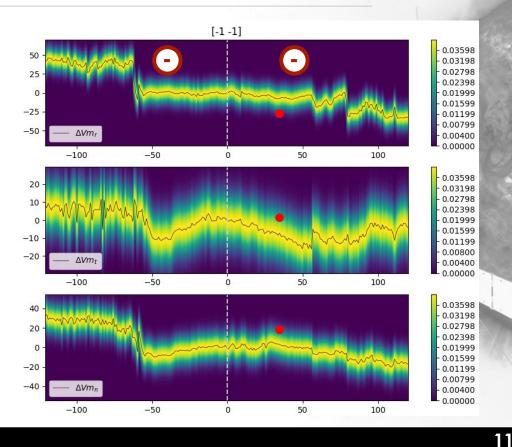


Anticorrelated model

Model:
$$\Delta \mathbf{v}_m = -\Delta \mathbf{v}_\mathbf{A}$$
 -

- Let's assume a normal distribution of the data around the model with dispersion = 10 km/s
- For each data point the likelihood writes

$$p(\Delta \mathbf{V}_i | \mathcal{M}_j) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp \frac{-||\Delta \mathbf{V}_i - \Delta \mathbf{V}_{\mathcal{M}_j,i}||^2}{2\sigma^2}$$



Anticorrelated model

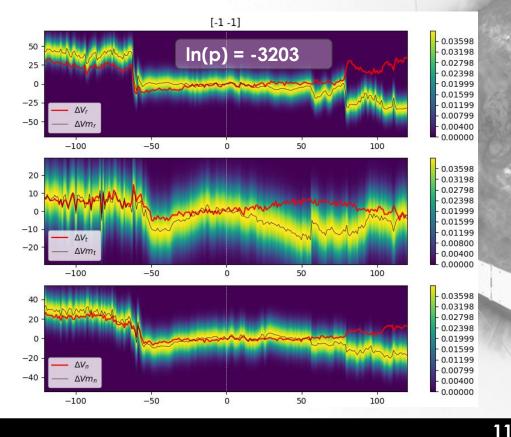
Model:
$$\Delta \mathbf{v}_m = -\Delta \mathbf{v}_\mathbf{A}$$
 -

- Let's assume a normal distribution of the data around the model with dispersion = 10 km/s
- For each data point the likelihood writes

$$p(\Delta \mathbf{V}_i | \mathcal{M}_j) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp \frac{-||\Delta \mathbf{V}_i - \Delta \mathbf{V}_{\mathcal{M}_j,i}||^2}{2\sigma^2}$$

□ For the complete vector :

$$\ln p(\Delta \mathbf{V}|\mathcal{M}_j) = \sum_{i=1}^n \ln p(\Delta \mathbf{V}_i|\mathcal{M}_j)$$



Jet -/+ model

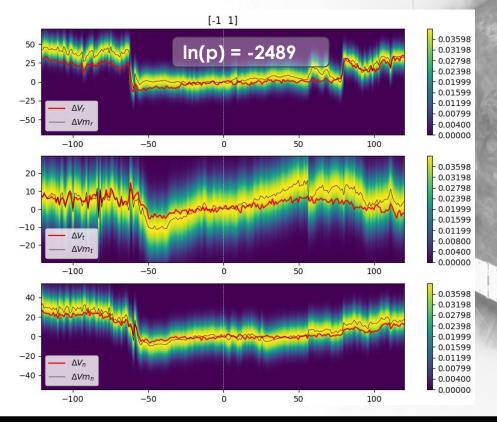
Model: $\Delta \mathbf{v}_m = -\Delta \mathbf{v}_\mathbf{A}$ -

- Let's assume a normal distribution of the data around the model with dispersion = 10 km/s
- For each data point the likelihood writes

$$p(\Delta \mathbf{V}_i | \mathcal{M}_j) = \frac{1}{(2\pi\sigma^2)^{3/2}} \exp \frac{-||\Delta \mathbf{V}_i - \Delta \mathbf{V}_{\mathcal{M}_j,i}||^2}{2\sigma^2}$$

□ For the complete vector :

$$\ln p(\Delta \mathbf{V}|\mathcal{M}_j) = \sum_{i=1}^n \ln p(\Delta \mathbf{V}_i|\mathcal{M}_j)$$



Comparing likelihood overtime

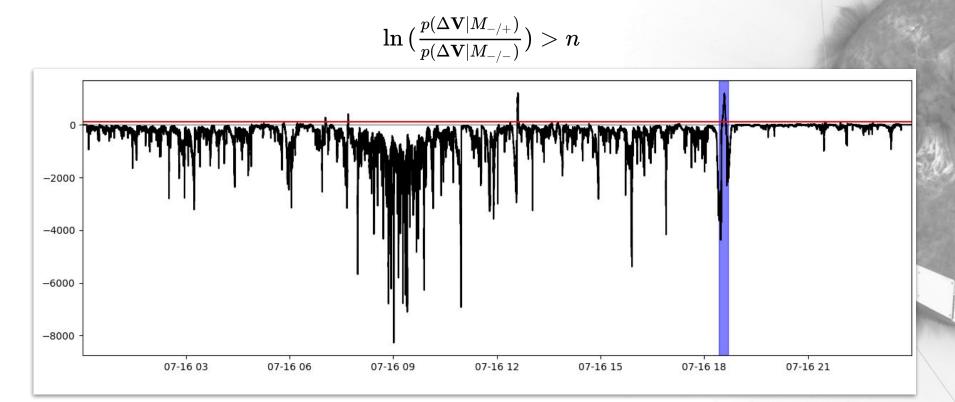


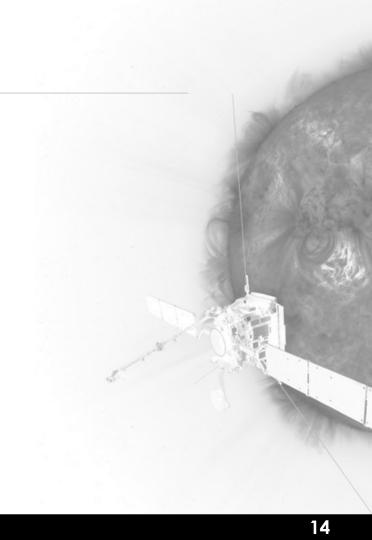
Table of contents

1 In-situ signature

2 The Walen relation

3 Likelihood of the data

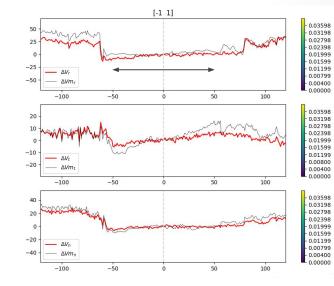
4 Results



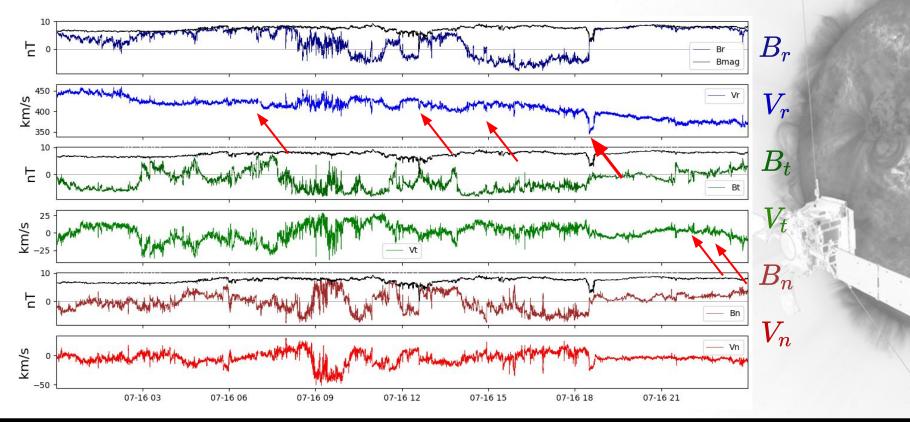
2 detection criteria

$$\label{eq:linear_states} \square \quad \ln\big(\frac{p(\Delta \mathbf{V}|M_{-/+})}{\max(p(\Delta \mathbf{V}|M_{+/+}), p(\Delta \mathbf{V}|M_{-/-})} \big) > n$$

Detection persistent for at least 10% of n points

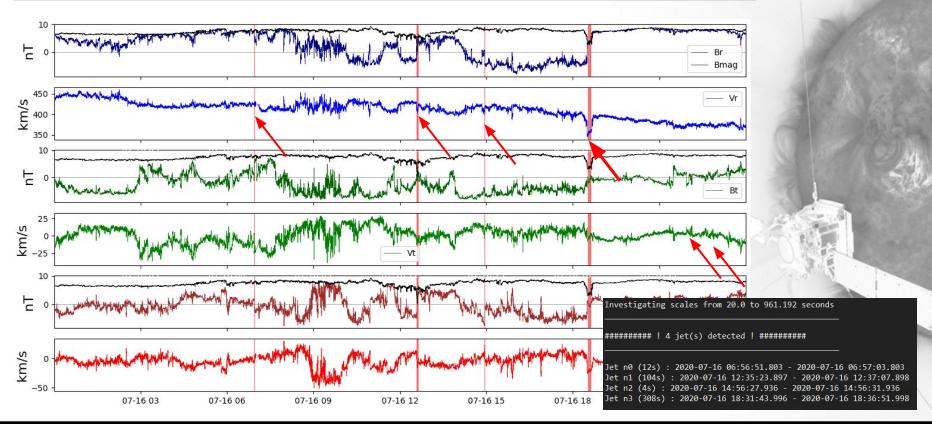


Case study : Lavraud + 2021



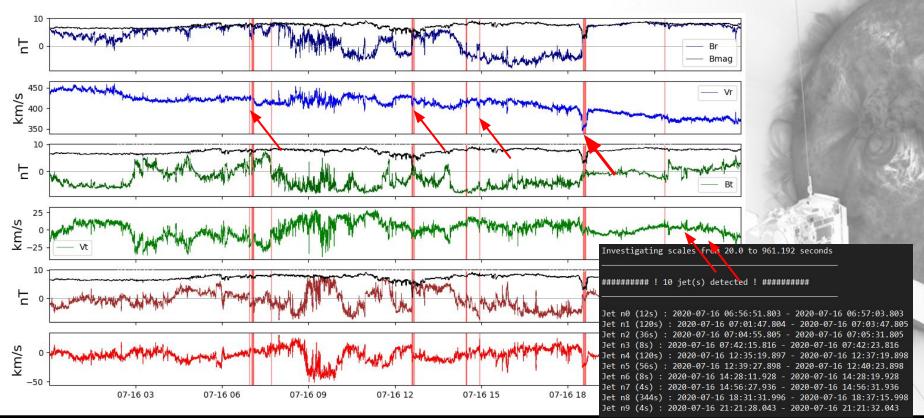
16th of July 2020

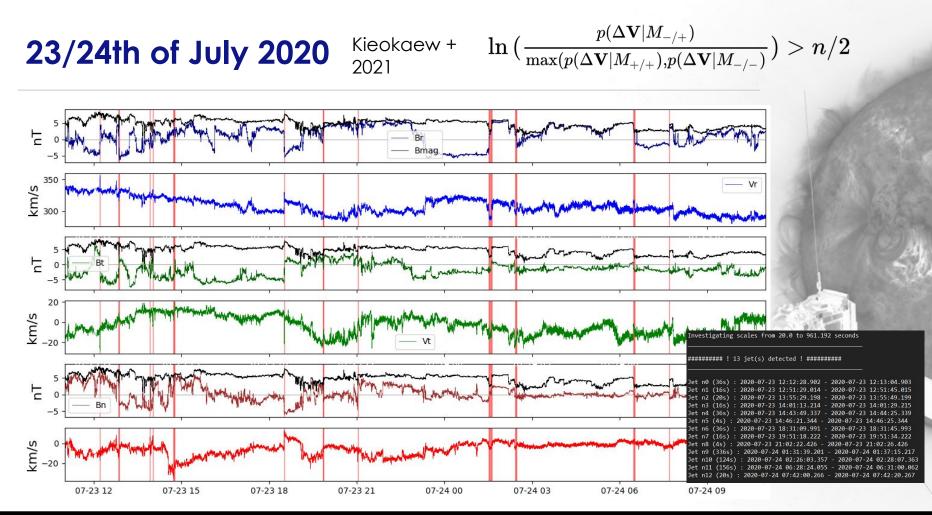
$$\ln{(rac{p(\Delta \mathbf{V}|M_{-/+})}{\max(p(\Delta \mathbf{V}|M_{+/+}),p(\Delta \mathbf{V}|M_{-/-})})} > n}$$



16th of July 2020

$$\ln{(rac{p(\Delta \mathbf{V}|M_{-/+})}{\max(p(\Delta \mathbf{V}|M_{+/+}),p(\Delta \mathbf{V}|M_{-/-})})} > n/2}$$





July / August 2020 - ~100 jets
$$\ln\left(\frac{p(\Delta V|M_{-/+})}{\max(p(\Delta V|M_{+/+}),p(\Delta V|M_{-/-})}\right) > n$$

Conclusions & next steps

- Detection algorithm based on the Walen relation
- Could include some priors on the different models
- Check for coincidental burst mode data
- Check the potential detections and do some science :)

