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The Kelvin-Helmholtz Instability @l I'd p
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The magnetic Kelvin-Helmholtz instability (KHI) is a MHD shear-driven instability. It can be induced at the interface
between two media with different flow velocity and plasma conditions.

KHI onset condition from linear theory [Hasegawa, 1975]:

k- (Vg —V)]* > % [(k-B4)* + (k-Bp)®] i.e., AV > 2V, for uniform plasma conditions across the shear layer
P
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KH waves in the solar wind? @l 'd p
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KHI was theoretically postulated to develop in the solar wind at the interface of the adjacent streams of different
velocities in the solar wind [e.g., Parker, 1963; Burlaga, 1977; Miura and Pritchett, 1982; Korzhov et al. 1984].

KH waves were remotely observedin solar corona (Ofman & Thompson, 2011), at the CME flank (Foullon et al. 2011,
2013; Mostl et al. 2013) via EUV using SDO, and in a solar prominence (Hillier & Polito, 2018) using IRIS.
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Solar Orbiter position
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On July 23, 2020, Solar Orbiter was at R = 0.69 AU. It observed several structures in the slow solar wind.
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Latitude

Sun to Solar Orbiter Connectivity

MULTI-VP (Pinto & Rouillard, 2017), (Rouillard et al., 2020)
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Observation context @l I'd
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Heliospheric Current Sheet (HCS)
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Shear layer observations @l I'd
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Quasi-periodic fluctuations in B
(and V) within the shear layer

—
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Magnetic reconnection

@irap

astrophysique & planétologie

Near the wave edge (3), we observe an ion jet of AV= 13 km s co-located with the magnetic field rotation.
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We transform the data into the local current sheet Imn coordinates
using the hybrid MVA techniqgue [Gosling & Phan, 2013]

[: reconnecting component; m: out-of-plane (guide-field) component
/=[-0.29, 0.25,-0.92],

The Walén test predicts AV, ; = 33 km s m = [0.88, 0.4, ~0.16],
+AB n=1[0.37,-0.86, -0.34]

AV 4 ~
4 (Uompnion)l/2

The observed jet is sub-Alfvénic.
Sub-Alfvénic jets are not unusual [e.g., Haggerty et al. 2018]

Several reconnection signatures

« Adropin |B]

* lon number density enhancement [Gosling et al. 2005]
* |on heating [Phan et al. 2014]
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Velocity shear configuration @l I'd p
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To best see the shear layer, we perform the maximum variance analysis [Sonnerup & Cahill, 1967] on the ion bulk velocity.

Maximum variance direction: X =1[0.53, 0.79, -0.32] (i.e., shear direction = T, R)

8r
2 " Intermediate variance direction: Y = [0.84, -0.53, 0.07] (i.e., inhomogeneous direction)
= 2f Minimum variance direction:  Z=1[-0.12, -0.31, -0.95] (i.e., invariant = N)
£ 0of
—2F
-4
~ i Side 2
L, 160} Y
E I
=< 140 ‘
3 B, = (0, 4, 3) nT, N, =22 cm? X
T 260
] L.,
£ 250 -
~ B, = (4, 2, 1) nT, N, = 30 cm?
'vz V.
£ 20f ]
= [ However, this configuration is not a TD because there is non-zero magnetic

2018 20:38  20:58  21:18  21.38 field (By) along the surface normal. Complex 3-D configuration?

15/12/2021 9/15



A | Nasg

Linear theory analysis @ira p &

astrophysique & planétologie

Assumptions

1. The initial shear layer was in an equilibrium } (i.e., both are later introduced by the KH dynamics).
2. There was no B flux across the initial shear layer

KH growth rate v = [a12[(V1 — V2) -K]? —a1(Va1 - k)2 — ap(Va 2 - k)22

Side 2
Y i 2
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MHD simulation @irap
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To further test whether the observed conditions would support the KHI, we exploit an MHD simulation [Yang et al. 2016b;
Ruffolo et al. 2020] using the empirical values as boundary conditions.

We set up a simulation box in the local KH frame, which moves at the KH wave phase speed (V,, = 150 km s1).
Since B perpendicular to the shear flow does not impact the KHI, we keep only in-plane B.

Example of KHI development
Sidel ' EEEE '
T T T
B, = (0.16,0),p; = 1.0,T; = 0.02 Time: 207 w 20 -18 -16 -14 -12 -10 -08 -06 -04 -02 00 02 04 06 08 10
B, = (0,0),p, = 0.73,T, = 0.055
Side 2
Side 1
B, = (0.16,0),p; = 1.0,T; = 0.02 The observed event is consistent with KH waves as supported by the linear

theory and MHD simulation using the considered assumptions.
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B and V perturbation and boundary layer analysis @l 'd p
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To understand the local configuration of the KHI, we derive normals of the magnetic discontinuities using n = + (By) x (B >|)
1 2
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Magnetic spectra @l I'd
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V1 V2 V3 V4 V6

o K Region To examine turbulence properties of the KH event,
5 4 (1) we compare magnetic spectra of the KH interval to the outside region
3 (2) we examine individual vortices (excluding current sheets)
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Discussion

@irap

astrophysique & planétologie

Why in-situ KH waves were not observed before in the
solar wind?

(1) KHI criterion in the solar wind, which prefers AV > 2V,
and weak Bin the AVdirection
o Nearthe Sun, Band V, are large => KHI stabilized
o Intheinterplanetary medium, V,is decreasing and
Band Vbecomes less aligned

(2) KHI timescale
o The timescale for the decay of a KH vortex is on the
order of one over a few folding times. This time
scale is estimated to be ~ 10 minutes for the event.
o This timescale on the order of minutes should be

typical.

15/12/2021

Implications of KH waves in the solar wind

KH waves are expected to play important roles such
as allowing for plasma mixing and generating
turbulence in the solar wind as mediated by KH
vortex dynamics.

A\

7

vortex-induced
reconnection

KH-generated turbulence

[e.g., Rossi et al. 2015] [Erikkson et al. 2016]
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Summary & Discussion @l 'd p
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We report observations of the KH waves with Solar Orbiter on July 23, 2020 at 0.69 AU, during the cruise phase.
The KH wave interpretation is supported by the linear theory, MHD simulation, and boundary layer analysis.

Several KH waveforms are observed within a shear layer near the HCS with a period of ~ 7 minutes but only a few
vortices are clearly noticed. The KH wavelength is approximately 66, 400 + 8,400 km or 0.10 £+ 0.01 solar radii.

Additionally, we report the observation of an ion jet consistent with magnetic reconnection at one of the outbound
(trailing) edges, likely as a result of current sheet compression in between two KH vortices.

The power of the magnetic spectrum of the entire KHI interval approximately follows the power law scalings of k>3 and
k=%8in the inertial and kinetic ranges, respectively, consistent with turbulence cascade in the solar wind.

This event provides evidence for the existence of the KH waves in the solar wind. It sheds new light to solar wind shear
processes in the interplanetary medium with direct applications to shear-driven turbulence mediated by the KHI, likely
contributing to the solar wind fluctuations observed at 1 AU.

Published in the A&A Special issue!
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