Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

Information about the Auto-compatibility of inter-instrument interference campaign during the NECP.

General

Purpose & Objectives

An inter-instrument interference campaign is planned during the NECP to characterize the payload auto-compatibility.

...

Working Group Members

Points of contact at ESA

  • Sylvian Lodiot (MOC)

Deliverables

Operation preparation

Overall timeline of the mission

 Image Removed

Overall timeline of this campaign

The purpose of this campaign is to characterize the Solar Orbiter payload EMC in space.

RPW will run measurements covering the full frequency range for both magnetic and in electric sensors, in normal and burst mode. At the beginning of the campaign all the Solar Orbiter Instruments are OFF. Then they are successively set to ON. RPW will thus analyze the influence of each instrument on its measurements and on the background noise.

The switch on sequence is shown in table below:

 

 

...

STEP

Num.

...

 

...

 

RPW

...

 

MAG

...

 

EPD

...

 

SWA

...

 

PHI

...

 

EUI

...

 

SPICE

...

 

STIX

...

 

METIS

...

 

SOLOHI

...

1

...

 

T0 to

T1=T0 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

2

...

 

T1 to

T2=T1 + 80 min

 

...

 

ON

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

3

...

 

T2 to

T3=T2 + 80 min

 

...

 

ON

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

4

...

 

T3 to

T4=T3 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

5

...

 

T4 to

T5=T4 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

6

...

 

T5 to

T6=T5 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

7

...

 

T6 to

T7=T6 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

8

...

 

T7 to

T8=T7 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

 

OFF

...

9

...

 

T8 to

T9=T8 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

OFF

...

10

...

 

T9 to

T10=T9 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

11

...

 

T10 to

T11=T10 + 80 min

 

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

 

OFF

...

12

...

 

T11 to

T12=T11 + 80 min

 

...

 

ON

...

 

OFF

...

 

OFF

...

 

OFF

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

13

...

 

T12 to

T13=T12 + 80 min

 

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

 

ON

...

14

...

 

T13 to

T14=T13 + TBD min

 

...

 

All instruments OFF except RPW

Auto compatibility with the platform

- Changes in high gain antenna angle

- Effects of high gain antenna radiation on preamplifiers

- Changes in solar panel angles

 

Detailed timeline of the campaign 

Image Removed

Before A : Switch on RPW and put it in normal science mode

Between A and B : Run steps 1 to 13 (see previous table)

For each step, several configurations need to be tested : 

  • LFR: 9 different configurations in SBM1 configuration
  • TDS: 2 configurations in burst mode.
  • THR: all modes for equal times and sweep of all HF frequencies

At B : Step 14: switch off all instruments except RPW

At C : Switch OFF RPW

 

Details of analyzers configurations

LFR and BIAS

 

LFR measurements are in SBM1 mode (SBM1 and Normal mode data simultaneously).

For each switch on sequence, 9 LFR+BIAS configurations (R0, R1 and R2 parameters, BW parameter, SP0 and SP1 parameters) are settled.

The duration of a campaign for a given LFR/BIAS configuration should be as long as possible. Indeed enough time is needed to record at least one snapshot of f3-waveform data (nominally 2 x 150 s.)

 

Multiplexer configurations for LFR-BIAS: 

  • Conf 1: BIAS (V1_DC, V2_DC, V3_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 2: BIAS (V12_DC, V23_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 3: BIAS (V13_DC, V23_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 4: BIAS (V12_AC (gain 5), V23_AC (gain 5)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 5: BIAS (V13_AC (gain 5), V23_AC (gain 5)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 6: BIAS (V12_AC (gain 100), V23_AC (gain 100)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 7: BIAS (V13_AC (gain 100), V23_AC (gain 100)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 8: no BIAS, HF inputs, SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=0)
  • Conf 9: no BIAS, HF inputs, SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=1, BW=0)

 

We ask LFR and BIAS team to provide TC parameters (engineering value) for each of the 9 configurations during the inter-instrument interference campaign.

 

Open issues for LFR and BIAS team:

 

...

RPW sub-system teams will also contribute to define the RPW modes to be set during the deployement.

Contact at MOC

  • Sylvain dot Lodiot at esa dot int

Deliverables

Attached Items


View file
nameInter_instument_interference.docx
height250

 


 

...

LFR

 

...

LFR_LOAD_COMMON_PAR

...

value

...

TC_LFR_LOAD_NORMAL_PAR

...

value

...

 

...

 

...

 

...

 

...

SY_LFR_BW

...

 

...

      SY_LFR_N_SWF_L

...

 

...

SY_LFR_SP0

...

 

...

      SY_LFR_N_SWF_P

...

 

...

SY_LFR_SP1

...

 

...

      SY_LFR_N_ASM_P

...

 

...

SY_LFR_R0

...

 

...

      SY_LFR_N_BP_P0

...

 

...

SY_LFR_R1

...

 

...

      SY_LFR_N_BP_P1

...

 

...

SY_LFR_R2

...

 

...

      SY_LFR_N_CWF_LONG_F3

...

 

...

 

...

 

...

      PA_RPW_SPARE8_1

...

 

 

TC_LFR_LOAD_SBM1_PAR

value

 

 

SY_LFR_S1_BP_P0

 

SY_LFR_S1_BP_P1

 

 

BIAS

 

...

TC_DPU_SET_BIAS_MODE

...

Value

...

     

...

 

...

      CP_BIA_SET_MODE_ENAB_SET_HV

...

 

...

      CP_BIA_SET_MODE_ENAB_HV

...

 

...

      CP_BIA_SET_MODE_ENAB_SET_MX

...

 

...

      CP_BIA_SET_MODE_SET_MX_MODE

...

 

...

  

...

 

...

    TC_DPU_SET_BIAS_RELAY

...

 

...

    

...

 

...

      CP_BIA_SET_RELAY_DIFF_GAIN

...

 

...

      CP_BIA_SET_RELAY_BIA_3

...

 

...

      CP_BIA_SET_RELAY_BIA_2

...

 

...

      CP_BIA_SET_RELAY_BIA_1"

...

 

...

      CP_BIA_SET_RELAY_DIFF_PROBE

...

 

...

      CP_BIA_SET_RELAY_SWITCH_P3

...

 

...

      CP_BIA_SET_RELAY_SWITCH_P2

...

 

...

      CP_BIA_SET_RELAY_SWITCH_P1

...

 

...

   

...

 

...

    TC_DPU_SET_BIAS1

...

 

...

    

...

 

...

      CP_BIA_SET_BIAS1

...

 

...

   

...

 

...

    TC_DPU_SET_BIAS2

...

 

...

   

...

 

...

    CP_BIA_SET_BIAS2

...

 

...

   

...

 

...

    TC_DPU_SET_BIAS3

...

 

...

   

...

 

...

    CP_BIA_SET_BIAS3

...

 

 

TDS

 

Two configurations for TDS:

  • BURST mode single ended- at least 1 minute
    • Sampling rate 524 ksps.
    • High gain, single ended input configuration
    • Regular snapshot of 32k samples taken every 10 seconds.
    • MAMP (TDS maximum) product enabled at 128 sps.
    • Triggered snapshots and statistics enabled
    • Histograms disabled

At the end of the one-minute run, triggered snapshot queue dumped and 16 triggered snapshots saved.

  • BURST mode dipole - at least 1 minute
    • Sampling rate 524 ksps.
    • High gain, basic dipole input configuration
    • Regular snapshot of 32k samples taken every 10 seconds.
    • MAMP (TDS maximum) product enabled at 128 sps.
    • Triggered snapshots and statistics enabled
    • Histograms disabled

At the end of the one-minute run, triggered snapshot queue dumped and 16 triggered snapshots saved.

 

We ask TDS team to provide the TC parameters (engineering value) for the 2 configurations during inter-instrument interference campaign.

  

...

TC_TDS_LOAD_COMMON_PAR

...

Value

...

TC_TDS_LOAD_BURST_PAR

...

Value

...

      CP_TDS_C_HF_LF_POWER

...

 

...

SY_TDS_B_RS_RESERVED

...

 

...

 SY_TDS_C_LF_MUX_RESERVED

...

 

...

SY_TDS_B_RS_ENAB

...

 

...

      CP_TDS_C_LF_MUX_CONF_SET

...

 

...

CP_TDS_B_RS_ADC_CH_NR

...

 

...

SY_TDS_C_LFINMUX_RESERVED2

...

 

...

SY_TDS_B_RS_ADC_CH4

...

 

...

 SY_TDS_C_LFINMUX_RESERVED

...

 

...

SY_TDS_B_RS_ADC_CH3

...

 

...

      SY_TDS_C_ENAB_LF_IN6

...

 

...

SY_TDS_B_RS_ADC_CH2

...

 

...

      SY_TDS_C_ENAB_LF_IN5

...

 

...

SY_TDS_B_RS_ADC_CH1

...

 

...

      SY_TDS_C_ENAB_LF_IN4

...

 

...

SY_TDS_B_RS_DELAY_COARSE

...

 

...

      SY_TDS_C_ENAB_LF_IN3

...

 

...

SY_TDS_B_RS_DELAY_FINE

...

 

...

      SY_TDS_C_ENAB_LF_IN2

...

 

...

SY_TDS_B_RS_LEN

...

 

...

      SY_TDS_C_ENAB_LF_IN1

...

 

...

SY_TDS_B_MAMP_ENAB

...

 

...

      SY_TDS_C_HF_RESERVED

...

 

...

SY_TDS_B_MAMP_DEC_RATE

...

 

...

      SY_TDS_C_AD4_HF2_LOAD

...

 

...

SY_TDS_B_MAMP_ADC_CH4

...

 

...

      SY_TDS_C_AD3_HF2_LOAD

...

 

...

SY_TDS_B_MAMP_ADC_CH3

...

 

...

      SY_TDS_C_AD2_HF1_LOAD

...

 

...

SY_TDS_B_MAMP_ADC_CH2

...

 

...

      SY_TDS_C_AD1_HF3_LOAD

...

 

...

SY_TDS_B_MAMP_ADC_CH1

...

 

...

      SY_TDS_C_HF_CH4_LOW_GAIN

...

 

...

 

...

 

...

SY_TDS_C_HF_CH4_INPUT_ENAB

...

 

...

 

...

 

...

      SY_TDS_C_HF_CH3_LOW_GAIN

...

 

...

 

...

 

...

SY_TDS_C_HF_CH3_INPUT_ENAB

...

 

...

 

...

 

...

      SY_TDS_C_HF_CH2_LOW_GAIN

...

 

...

 

...

 

...

 SY_TDS_C_HF_CH2_INPUT_ENAB

...

 

...

 

...

 

...

      SY_TDS_C_HF_CH1_LOW_GAIN

...

 

...

 

...

 

...

 SY_TDS_C_HF_CH1_INPUT_ENAB

...

 

...

 

...

 

...

      SY_TDS_C_AD4_MUXA_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD4_MUXA_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD4_MUXB_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD4_MUXB_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD3_MUXA_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD3_MUXA_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD3_MUXB_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD3_MUXB_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD2_MUXA_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD2_MUXA_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD2_MUXB_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD2_MUXB_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD1_MUXA_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD1_MUXA_INH

...

 

...

 

...

 

...

      SY_TDS_C_AD1_MUXB_SET

...

 

...

 

...

 

...

      SY_TDS_C_AD1_MUXB_INH

...

 

...

 

...

 

...

      SY_TDS_C_CACHE_CTRL

...

 

...

 

...

 

...

SY_TDS_C_DISABLE_TIME_SYNC

...

 

...

 

...

 

...

      SY_TDS_C_SW_CONF_WORD2

...

 

...

 

...

 

...

      SY_TDS_C_SW_CONF_WORD3

...

 

...

 

...

 

 

TNR-HFR

 

TNR-HFR will run in all possible modes for equal times and making a sweep of all HF frequencies during each 80 minutes step. This includes the direction-finding modes, which allow testing the different antenna configurations.

 

ROC

  • HK S/C to monitor T on ANT, SCM, MEB. How to retrieve them?
  • Heaters SCM look at TM HK RPW
  • Monitoring T ANT vs. heater switch on and retrieve data from ESA

 

 

OPEN ISSUES:

 

  •  For the inter instrument interference test, LFR is in SBM1 mode and TDS is in BURST mode. These modes cannot be run simultaneously. How can we deal with this? Are the LFR and TDS measurement done separately?
  •  Validate temperature on ANT, SCM and MED. Number of measurements to acquire? Do we need to monitor these temperatures during other phases of the mission?
  •  HGA vs. PA
    •  300 V/m can be emitted by the HGA toward PAs
    •  Verify the period of the orbit when of HGA/PA conjunction
    •  Do we use the data measured during conjunction?
  •  Exact position of the moving parts for SPIS simulations (SPICE kernels). How to recover them?
  •  Monitoring of the activation periods of the PA and SCM heaters (HK_PDU_HEATER_CURRENT). Correlation with measured temperature to see if in these periods T really changes.
  •  Validation of the TDS detection algorithms and evaluation of the corresponding parameters.
  •  MAG synchronization. Make an internal calibration measurement for SCM and a measurement with MAG at the same time. This verifies that MAG is synchronized with SCM. MAG MUST BE turned on during the internal CAL of SCM.
  •  Galaxy Mode only for THR
  •  EMC. Excel table versus frequency: identification of known disturbances (E or B, fixed / variable / drifting, propagation through the system, etc.) → Checklist defined during ground tests, then update in flight

...

Orbitography

Give here the orbitography (i.e., time versus S/C orbit/attitude)

Operation Constraints

Give here the operation constraints at RPW and SOLO levels (e.g., TM rate, PW, SOOP, etc.)

Command/Control

Give here the list of flight procedures and IOR (PDOR?) required to execute this operation

Expected products

Data analysis

Expected data products

Give here the list of expected data products

Results

Give here the results of the data analysis (can be attached file, or link to references)