You are viewing an old version of this page. View the current version.

Compare with Current View Page History

Version 1 Next »

Information about the Auto-compatibility of inter-instrument interference campaign during the NECP.


General

Purpose & Objectives

An inter-instrument interference campaign is planned during the NECP to characterize the payload auto-compatibility.

Working Group Members

Points of contact at ESA

  • Sylvian Lodiot (MOC)

Deliverables



Operation preparation

Overall timeline of the mission

 


Overall timeline of this campaign

The purpose of this campaign is to characterize the Solar Orbiter payload EMC in space.

RPW will run measurements covering the full frequency range for both magnetic and in electric sensors, in normal and burst mode. At the beginning of the campaign all the Solar Orbiter Instruments are OFF. Then they are successively set to ON. RPW will thus analyze the influence of each instrument on its measurements and on the background noise.

The switch on sequence is shown in table below:

 

 

STEP

Num.

 

 

RPW

 

MAG

 

EPD

 

SWA

 

PHI

 

EUI

 

SPICE

 

STIX

 

METIS

 

SOLOHI

1

 

T0 to

T1=T0 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

2

 

T1 to

T2=T1 + 80 min

 

 

ON

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

3

 

T2 to

T3=T2 + 80 min

 

 

ON

 

OFF

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

4

 

T3 to

T4=T3 + 80 min

 

 

ON

 

OFF

 

OFF

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

5

 

T4 to

T5=T4 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

6

 

T5 to

T6=T5 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

7

 

T6 to

T7=T6 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

ON

 

OFF

 

OFF

 

OFF

8

 

T7 to

T8=T7 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

ON

 

OFF

 

OFF

9

 

T8 to

T9=T8 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

ON

 

OFF

10

 

T9 to

T10=T9 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

ON

11

 

T10 to

T11=T10 + 80 min

 

 

ON

 

ON

 

ON

 

ON

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

 

OFF

12

 

T11 to

T12=T11 + 80 min

 

 

ON

 

OFF

 

OFF

 

OFF

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

13

 

T12 to

T13=T12 + 80 min

 

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

 

ON

14

 

T13 to

T14=T13 + TBD min

 

 

All instruments OFF except RPW

Auto compatibility with the platform

- Changes in high gain antenna angle

- Effects of high gain antenna radiation on preamplifiers

- Changes in solar panel angles

 


Detailed timeline of the campaign 


Before A : Switch on RPW and put it in normal science mode

Between A and B : Run steps 1 to 13 (see previous table)

For each step, several configurations need to be tested : 

  • LFR: 9 different configurations in SBM1 configuration
  • TDS: 2 configurations in burst mode.
  • THR: all modes for equal times and sweep of all HF frequencies

At B : Step 14: switch off all instruments except RPW

At C : Switch OFF RPW

 

Details of analyzers configurations

LFR and BIAS

 

LFR measurements are in SBM1 mode (SBM1 and Normal mode data simultaneously).

For each switch on sequence, 9 LFR+BIAS configurations (R0, R1 and R2 parameters, BW parameter, SP0 and SP1 parameters) are settled.

The duration of a campaign for a given LFR/BIAS configuration should be as long as possible. Indeed enough time is needed to record at least one snapshot of f3-waveform data (nominally 2 x 150 s.)

 

Multiplexer configurations for LFR-BIAS: 

  • Conf 1: BIAS (V1_DC, V2_DC, V3_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 2: BIAS (V12_DC, V23_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 3: BIAS (V13_DC, V23_DC), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=1, SP0=SP1=0, BW=1)
  • Conf 4: BIAS (V12_AC (gain 5), V23_AC (gain 5)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 5: BIAS (V13_AC (gain 5), V23_AC (gain 5)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 6: BIAS (V12_AC (gain 100), V23_AC (gain 100)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 7: BIAS (V13_AC (gain 100), V23_AC (gain 100)), SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=1)
  • Conf 8: no BIAS, HF inputs, SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=0, BW=0)
  • Conf 9: no BIAS, HF inputs, SCM (SCM1, SCM2, SCM3), LFR (R0=R1=R2=0, SP0=SP1=1, BW=0)

 

We ask LFR and BIAS team to provide TC parameters (engineering value) for each of the 9 configurations during the inter-instrument interference campaign.

 

Open issues for LFR and BIAS team:

 

  • K factor for LFR (distance between antennas and their orientations) à does LFR need a particular configuration to measure the K-factor or the values are already known?
  • Test of saturation for BIAS when gain=100. Verify when the saturation is reached by progressively varying the gain.

LFR

 

LFR_LOAD_COMMON_PAR

value

TC_LFR_LOAD_NORMAL_PAR

value

 

 

 

 

SY_LFR_BW

 

      SY_LFR_N_SWF_L

 

SY_LFR_SP0

 

      SY_LFR_N_SWF_P

 

SY_LFR_SP1

 

      SY_LFR_N_ASM_P

 

SY_LFR_R0

 

      SY_LFR_N_BP_P0

 

SY_LFR_R1

 

      SY_LFR_N_BP_P1

 

SY_LFR_R2

 

      SY_LFR_N_CWF_LONG_F3

 

 

 

      PA_RPW_SPARE8_1

 

 

TC_LFR_LOAD_SBM1_PAR

value

 

 

SY_LFR_S1_BP_P0

 

SY_LFR_S1_BP_P1

 

 

BIAS

 

TC_DPU_SET_BIAS_MODE

Value

     

 

      CP_BIA_SET_MODE_ENAB_SET_HV

 

      CP_BIA_SET_MODE_ENAB_HV

 

      CP_BIA_SET_MODE_ENAB_SET_MX

 

      CP_BIA_SET_MODE_SET_MX_MODE

 

  

 

    TC_DPU_SET_BIAS_RELAY

 

    

 

      CP_BIA_SET_RELAY_DIFF_GAIN

 

      CP_BIA_SET_RELAY_BIA_3

 

      CP_BIA_SET_RELAY_BIA_2

 

      CP_BIA_SET_RELAY_BIA_1"

 

      CP_BIA_SET_RELAY_DIFF_PROBE

 

      CP_BIA_SET_RELAY_SWITCH_P3

 

      CP_BIA_SET_RELAY_SWITCH_P2

 

      CP_BIA_SET_RELAY_SWITCH_P1

 

   

 

    TC_DPU_SET_BIAS1

 

    

 

      CP_BIA_SET_BIAS1

 

   

 

    TC_DPU_SET_BIAS2

 

   

 

    CP_BIA_SET_BIAS2

 

   

 

    TC_DPU_SET_BIAS3

 

   

 

    CP_BIA_SET_BIAS3

 

 

TDS

 

Two configurations for TDS:

  • BURST mode single ended- at least 1 minute
    • Sampling rate 524 ksps.
    • High gain, single ended input configuration
    • Regular snapshot of 32k samples taken every 10 seconds.
    • MAMP (TDS maximum) product enabled at 128 sps.
    • Triggered snapshots and statistics enabled
    • Histograms disabled

At the end of the one-minute run, triggered snapshot queue dumped and 16 triggered snapshots saved.

  • BURST mode dipole - at least 1 minute
    • Sampling rate 524 ksps.
    • High gain, basic dipole input configuration
    • Regular snapshot of 32k samples taken every 10 seconds.
    • MAMP (TDS maximum) product enabled at 128 sps.
    • Triggered snapshots and statistics enabled
    • Histograms disabled

At the end of the one-minute run, triggered snapshot queue dumped and 16 triggered snapshots saved.

 

We ask TDS team to provide the TC parameters (engineering value) for the 2 configurations during inter-instrument interference campaign.

  

TC_TDS_LOAD_COMMON_PAR

Value

TC_TDS_LOAD_BURST_PAR

Value

      CP_TDS_C_HF_LF_POWER

 

SY_TDS_B_RS_RESERVED

 

 SY_TDS_C_LF_MUX_RESERVED

 

SY_TDS_B_RS_ENAB

 

      CP_TDS_C_LF_MUX_CONF_SET

 

CP_TDS_B_RS_ADC_CH_NR

 

SY_TDS_C_LFINMUX_RESERVED2

 

SY_TDS_B_RS_ADC_CH4

 

 SY_TDS_C_LFINMUX_RESERVED

 

SY_TDS_B_RS_ADC_CH3

 

      SY_TDS_C_ENAB_LF_IN6

 

SY_TDS_B_RS_ADC_CH2

 

      SY_TDS_C_ENAB_LF_IN5

 

SY_TDS_B_RS_ADC_CH1

 

      SY_TDS_C_ENAB_LF_IN4

 

SY_TDS_B_RS_DELAY_COARSE

 

      SY_TDS_C_ENAB_LF_IN3

 

SY_TDS_B_RS_DELAY_FINE

 

      SY_TDS_C_ENAB_LF_IN2

 

SY_TDS_B_RS_LEN

 

      SY_TDS_C_ENAB_LF_IN1

 

SY_TDS_B_MAMP_ENAB

 

      SY_TDS_C_HF_RESERVED

 

SY_TDS_B_MAMP_DEC_RATE

 

      SY_TDS_C_AD4_HF2_LOAD

 

SY_TDS_B_MAMP_ADC_CH4

 

      SY_TDS_C_AD3_HF2_LOAD

 

SY_TDS_B_MAMP_ADC_CH3

 

      SY_TDS_C_AD2_HF1_LOAD

 

SY_TDS_B_MAMP_ADC_CH2

 

      SY_TDS_C_AD1_HF3_LOAD

 

SY_TDS_B_MAMP_ADC_CH1

 

      SY_TDS_C_HF_CH4_LOW_GAIN

 

 

 

SY_TDS_C_HF_CH4_INPUT_ENAB

 

 

 

      SY_TDS_C_HF_CH3_LOW_GAIN

 

 

 

SY_TDS_C_HF_CH3_INPUT_ENAB

 

 

 

      SY_TDS_C_HF_CH2_LOW_GAIN

 

 

 

 SY_TDS_C_HF_CH2_INPUT_ENAB

 

 

 

      SY_TDS_C_HF_CH1_LOW_GAIN

 

 

 

 SY_TDS_C_HF_CH1_INPUT_ENAB

 

 

 

      SY_TDS_C_AD4_MUXA_SET

 

 

 

      SY_TDS_C_AD4_MUXA_INH

 

 

 

      SY_TDS_C_AD4_MUXB_SET

 

 

 

      SY_TDS_C_AD4_MUXB_INH

 

 

 

      SY_TDS_C_AD3_MUXA_SET

 

 

 

      SY_TDS_C_AD3_MUXA_INH

 

 

 

      SY_TDS_C_AD3_MUXB_SET

 

 

 

      SY_TDS_C_AD3_MUXB_INH

 

 

 

      SY_TDS_C_AD2_MUXA_SET

 

 

 

      SY_TDS_C_AD2_MUXA_INH

 

 

 

      SY_TDS_C_AD2_MUXB_SET

 

 

 

      SY_TDS_C_AD2_MUXB_INH

 

 

 

      SY_TDS_C_AD1_MUXA_SET

 

 

 

      SY_TDS_C_AD1_MUXA_INH

 

 

 

      SY_TDS_C_AD1_MUXB_SET

 

 

 

      SY_TDS_C_AD1_MUXB_INH

 

 

 

      SY_TDS_C_CACHE_CTRL

 

 

 

SY_TDS_C_DISABLE_TIME_SYNC

 

 

 

      SY_TDS_C_SW_CONF_WORD2

 

 

 

      SY_TDS_C_SW_CONF_WORD3

 

 

 

 

TNR-HFR

 

TNR-HFR will run in all possible modes for equal times and making a sweep of all HF frequencies during each 80 minutes step. This includes the direction-finding modes, which allow testing the different antenna configurations.

 

ROC

  • HK S/C to monitor T on ANT, SCM, MEB. How to retrieve them?
  • Heaters SCM look at TM HK RPW
  • Monitoring T ANT vs. heater switch on and retrieve data from ESA

 

 

OPEN ISSUES:

 

  • For the inter instrument interference test, LFR is in SBM1 mode and TDS is in BURST mode. These modes cannot be run simultaneously. How can we deal with this? Are the LFR and TDS measurement done separately?
  • Validate temperature on ANT, SCM and MED. Number of measurements to acquire? Do we need to monitor these temperatures during other phases of the mission?
  • HGA vs. PA
    • 300 V/m can be emitted by the HGA toward PAs
    • Verify the period of the orbit when of HGA/PA conjunction
    • Do we use the data measured during conjunction?
  • Exact position of the moving parts for SPIS simulations (SPICE kernels). How to recover them?
  • Monitoring of the activation periods of the PA and SCM heaters (HK_PDU_HEATER_CURRENT). Correlation with measured temperature to see if in these periods T really changes.
  • Validation of the TDS detection algorithms and evaluation of the corresponding parameters.
  • MAG synchronization. Make an internal calibration measurement for SCM and a measurement with MAG at the same time. This verifies that MAG is synchronized with SCM. MAG MUST BE turned on during the internal CAL of SCM.
  • Galaxy Mode only for THR
  • EMC. Excel table versus frequency: identification of known disturbances (E or B, fixed / variable / drifting, propagation through the system, etc.) → Checklist defined during ground tests, then update in flight


Orbitography

Give here the orbitography (i.e., time versus S/C orbit/attitude)

Operation Constraints

Give here the operation constraints at RPW and SOLO levels (e.g., TM rate, PW, SOOP, etc.)

Command/Control

Give here the list of flight procedures and IOR (PDOR?) required to execute this operation

Expected products

Data analysis

Expected data products

Give here the list of expected data products

Results

Give here the results of the data analysis (can be attached file, or link to references)

  • No labels